File size: 24,383 Bytes
147b3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3bf21
147b3a2
 
 
 
 
 
 
 
 
 
 
 
 
5f3bf21
147b3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3bf21
147b3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3bf21
147b3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import asyncio
import importlib
import inspect
import multiprocessing
import os
import re
import signal
import socket
import tempfile
import uuid
from argparse import Namespace
from contextlib import asynccontextmanager
from functools import partial
from http import HTTPStatus
from typing import AsyncIterator, Optional, Set, Tuple

import uvloop
from fastapi import APIRouter, FastAPI, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
from starlette.datastructures import State
from starlette.routing import Mount
from typing_extensions import assert_never

import vllm.envs as envs
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.multiprocessing.client import MQLLMEngineClient
from vllm.engine.multiprocessing.engine import run_mp_engine
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.launcher import serve_http
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
                                              validate_parsed_serve_args)
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
                                              ChatCompletionResponse,
                                              CompletionRequest,
                                              CompletionResponse,
                                              DetokenizeRequest,
                                              DetokenizeResponse,
                                              EmbeddingRequest,
                                              EmbeddingResponse, ErrorResponse,
                                              LoadLoraAdapterRequest,
                                              TokenizeRequest,
                                              TokenizeResponse,
                                              UnloadLoraAdapterRequest)
# yapf: enable
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
from vllm.entrypoints.openai.serving_tokenization import (
    OpenAIServingTokenization)
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext
from vllm.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path,
                        is_valid_ipv6_address)
from vllm.version import __version__ as VLLM_VERSION

if envs.VLLM_USE_V1:
    from vllm.v1.engine.async_llm import AsyncLLMEngine  # type: ignore
else:
    from vllm.engine.async_llm_engine import AsyncLLMEngine  # type: ignore

TIMEOUT_KEEP_ALIVE = 5  # seconds

prometheus_multiproc_dir: tempfile.TemporaryDirectory

# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
logger = init_logger('vllm.entrypoints.openai.api_server')

_running_tasks: Set[asyncio.Task] = set()


@asynccontextmanager
async def lifespan(app: FastAPI):
    try:
        if app.state.log_stats:
            engine_client: EngineClient = app.state.engine_client

            async def _force_log():
                while True:
                    await asyncio.sleep(10.)
                    await engine_client.do_log_stats()

            task = asyncio.create_task(_force_log())
            _running_tasks.add(task)
            task.add_done_callback(_running_tasks.remove)
        else:
            task = None
        try:
            yield
        finally:
            if task is not None:
                task.cancel()
    finally:
        # Ensure app state including engine ref is gc'd
        del app.state


@asynccontextmanager
async def build_async_engine_client(
        args: Namespace) -> AsyncIterator[EngineClient]:

    # Context manager to handle engine_client lifecycle
    # Ensures everything is shutdown and cleaned up on error/exit
    engine_args = AsyncEngineArgs.from_cli_args(args)

    async with build_async_engine_client_from_engine_args(
            engine_args, args.disable_frontend_multiprocessing) as engine:
        yield engine


@asynccontextmanager
async def build_async_engine_client_from_engine_args(
    engine_args: AsyncEngineArgs,
    disable_frontend_multiprocessing: bool = False,
) -> AsyncIterator[EngineClient]:
    """
    Create EngineClient, either:
        - in-process using the AsyncLLMEngine Directly
        - multiprocess using AsyncLLMEngine RPC

    Returns the Client or None if the creation failed.
    """

    # Fall back
    # TODO: fill out feature matrix.
    if (MQLLMEngineClient.is_unsupported_config(engine_args)
            or envs.VLLM_USE_V1 or disable_frontend_multiprocessing):

        engine_config = engine_args.create_engine_config()
        uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
                           "uses_ray", False)

        build_engine = partial(AsyncLLMEngine.from_engine_args,
                               engine_args=engine_args,
                               engine_config=engine_config,
                               usage_context=UsageContext.OPENAI_API_SERVER)
        if uses_ray:
            # Must run in main thread with ray for its signal handlers to work
            engine_client = build_engine()
        else:
            engine_client = await asyncio.get_running_loop().run_in_executor(
                None, build_engine)

        yield engine_client
        if hasattr(engine_client, "shutdown"):
            engine_client.shutdown()
        return

    # Otherwise, use the multiprocessing AsyncLLMEngine.
    else:
        if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
            # Make TemporaryDirectory for prometheus multiprocessing
            # Note: global TemporaryDirectory will be automatically
            #   cleaned up upon exit.
            global prometheus_multiproc_dir
            prometheus_multiproc_dir = tempfile.TemporaryDirectory()
            os.environ[
                "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
        else:
            logger.warning(
                "Found PROMETHEUS_MULTIPROC_DIR was set by user. "
                "This directory must be wiped between vLLM runs or "
                "you will find inaccurate metrics. Unset the variable "
                "and vLLM will properly handle cleanup.")

        # Select random path for IPC.
        ipc_path = get_open_zmq_ipc_path()
        logger.info("Multiprocessing frontend to use %s for IPC Path.",
                    ipc_path)

        # Start RPCServer in separate process (holds the LLMEngine).
        # the current process might have CUDA context,
        # so we need to spawn a new process
        context = multiprocessing.get_context("spawn")

        # The Process can raise an exception during startup, which may
        # not actually result in an exitcode being reported. As a result
        # we use a shared variable to communicate the information.
        engine_alive = multiprocessing.Value('b', True, lock=False)
        engine_process = context.Process(target=run_mp_engine,
                                         args=(engine_args,
                                               UsageContext.OPENAI_API_SERVER,
                                               ipc_path, engine_alive))
        engine_process.start()
        engine_pid = engine_process.pid
        assert engine_pid is not None, "Engine process failed to start."
        logger.info("Started engine process with PID %d", engine_pid)

        # Build RPCClient, which conforms to EngineClient Protocol.
        engine_config = engine_args.create_engine_config()
        build_client = partial(MQLLMEngineClient, ipc_path, engine_config,
                               engine_pid)
        mq_engine_client = await asyncio.get_running_loop().run_in_executor(
            None, build_client)
        try:
            while True:
                try:
                    await mq_engine_client.setup()
                    break
                except TimeoutError:
                    if (not engine_process.is_alive()
                            or not engine_alive.value):
                        raise RuntimeError(
                            "Engine process failed to start. See stack "
                            "trace for the root cause.") from None

            yield mq_engine_client  # type: ignore[misc]
        finally:
            # Ensure rpc server process was terminated
            engine_process.terminate()

            # Close all open connections to the backend
            mq_engine_client.close()

            # Wait for engine process to join
            engine_process.join(4)
            if engine_process.exitcode is None:
                # Kill if taking longer than 5 seconds to stop
                engine_process.kill()

            # Lazy import for prometheus multiprocessing.
            # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
            # before prometheus_client is imported.
            # See https://prometheus.github.io/client_python/multiprocess/
            from prometheus_client import multiprocess
            multiprocess.mark_process_dead(engine_process.pid)


router = APIRouter()


def mount_metrics(app: FastAPI):
    # Lazy import for prometheus multiprocessing.
    # We need to set PROMETHEUS_MULTIPROC_DIR environment variable
    # before prometheus_client is imported.
    # See https://prometheus.github.io/client_python/multiprocess/
    from prometheus_client import (CollectorRegistry, make_asgi_app,
                                   multiprocess)

    prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
    if prometheus_multiproc_dir_path is not None:
        logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
                    prometheus_multiproc_dir_path)
        registry = CollectorRegistry()
        multiprocess.MultiProcessCollector(registry)

        # Add prometheus asgi middleware to route /metrics requests
        metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
    else:
        # Add prometheus asgi middleware to route /metrics requests
        metrics_route = Mount("/metrics", make_asgi_app())

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)


def base(request: Request) -> OpenAIServing:
    # Reuse the existing instance
    return tokenization(request)


def chat(request: Request) -> Optional[OpenAIServingChat]:
    return request.app.state.openai_serving_chat


def completion(request: Request) -> Optional[OpenAIServingCompletion]:
    return request.app.state.openai_serving_completion


def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
    return request.app.state.openai_serving_embedding


def tokenization(request: Request) -> OpenAIServingTokenization:
    return request.app.state.openai_serving_tokenization


def engine_client(request: Request) -> EngineClient:
    return request.app.state.engine_client


@router.get("/health")
async def health(raw_request: Request) -> Response:
    """Health check."""
    await engine_client(raw_request).check_health()
    return Response(status_code=200)


@router.post("/tokenize")
async def tokenize(request: TokenizeRequest, raw_request: Request):
    handler = tokenization(raw_request)

    generator = await handler.create_tokenize(request)
    if isinstance(generator, ErrorResponse):
        return JSONResponse(content=generator.model_dump(),
                            status_code=generator.code)
    elif isinstance(generator, TokenizeResponse):
        return JSONResponse(content=generator.model_dump())

    assert_never(generator)


@router.post("/detokenize")
async def detokenize(request: DetokenizeRequest, raw_request: Request):
    handler = tokenization(raw_request)

    generator = await handler.create_detokenize(request)
    if isinstance(generator, ErrorResponse):
        return JSONResponse(content=generator.model_dump(),
                            status_code=generator.code)
    elif isinstance(generator, DetokenizeResponse):
        return JSONResponse(content=generator.model_dump())

    assert_never(generator)


@router.get("/api/v1/models")
async def show_available_models(raw_request: Request):
    handler = base(raw_request)

    models = await handler.show_available_models()
    return JSONResponse(content=models.model_dump())


@router.get("/version")
async def show_version():
    ver = {"version": VLLM_VERSION}
    return JSONResponse(content=ver)


@router.post("/api/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
                                 raw_request: Request):
    handler = chat(raw_request)
    if handler is None:
        return base(raw_request).create_error_response(
            message="The model does not support Chat Completions API")

    generator = await handler.create_chat_completion(request, raw_request)

    if isinstance(generator, ErrorResponse):
        return JSONResponse(content=generator.model_dump(),
                            status_code=generator.code)

    elif isinstance(generator, ChatCompletionResponse):
        return JSONResponse(content=generator.model_dump())

    return StreamingResponse(content=generator, media_type="text/event-stream")


@router.post("/api/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
    handler = completion(raw_request)
    if handler is None:
        return base(raw_request).create_error_response(
            message="The model does not support Completions API")

    generator = await handler.create_completion(request, raw_request)
    if isinstance(generator, ErrorResponse):
        return JSONResponse(content=generator.model_dump(),
                            status_code=generator.code)
    elif isinstance(generator, CompletionResponse):
        return JSONResponse(content=generator.model_dump())

    return StreamingResponse(content=generator, media_type="text/event-stream")


@router.post("/api/v1/embeddings")
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
    handler = embedding(raw_request)
    if handler is None:
        return base(raw_request).create_error_response(
            message="The model does not support Embeddings API")

    generator = await handler.create_embedding(request, raw_request)
    if isinstance(generator, ErrorResponse):
        return JSONResponse(content=generator.model_dump(),
                            status_code=generator.code)
    elif isinstance(generator, EmbeddingResponse):
        return JSONResponse(content=generator.model_dump())

    assert_never(generator)


if envs.VLLM_TORCH_PROFILER_DIR:
    logger.warning(
        "Torch Profiler is enabled in the API server. This should ONLY be "
        "used for local development!")

    @router.post("/start_profile")
    async def start_profile(raw_request: Request):
        logger.info("Starting profiler...")
        await engine_client(raw_request).start_profile()
        logger.info("Profiler started.")
        return Response(status_code=200)

    @router.post("/stop_profile")
    async def stop_profile(raw_request: Request):
        logger.info("Stopping profiler...")
        await engine_client(raw_request).stop_profile()
        logger.info("Profiler stopped.")
        return Response(status_code=200)


if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
    logger.warning(
        "Lora dynamic loading & unloading is enabled in the API server. "
        "This should ONLY be used for local development!")

    @router.post("/v1/load_lora_adapter")
    async def load_lora_adapter(request: LoadLoraAdapterRequest,
                                raw_request: Request):
        for route in [chat, completion, embedding]:
            handler = route(raw_request)
            if handler is not None:
                response = await handler.load_lora_adapter(request)
                if isinstance(response, ErrorResponse):
                    return JSONResponse(content=response.model_dump(),
                                        status_code=response.code)

        return Response(status_code=200, content=response)

    @router.post("/v1/unload_lora_adapter")
    async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
                                  raw_request: Request):
        for route in [chat, completion, embedding]:
            handler = route(raw_request)
            if handler is not None:
                response = await handler.unload_lora_adapter(request)
                if isinstance(response, ErrorResponse):
                    return JSONResponse(content=response.model_dump(),
                                        status_code=response.code)

        return Response(status_code=200, content=response)


def build_app(args: Namespace) -> FastAPI:
    if args.disable_fastapi_docs:
        app = FastAPI(openapi_url=None,
                      docs_url=None,
                      redoc_url=None,
                      lifespan=lifespan)
    else:
        app = FastAPI(lifespan=lifespan)
    app.include_router(router)
    app.root_path = args.root_path

    mount_metrics(app)

    app.add_middleware(
        CORSMiddleware,
        allow_origins=args.allowed_origins,
        allow_credentials=args.allow_credentials,
        allow_methods=args.allowed_methods,
        allow_headers=args.allowed_headers,
    )

    @app.exception_handler(RequestValidationError)
    async def validation_exception_handler(_, exc):
        chat = app.state.openai_serving_chat
        err = chat.create_error_response(message=str(exc))
        return JSONResponse(err.model_dump(),
                            status_code=HTTPStatus.BAD_REQUEST)

    if token := envs.VLLM_API_KEY or args.api_key:

        @app.middleware("http")
        async def authentication(request: Request, call_next):
            root_path = "" if args.root_path is None else args.root_path
            if request.method == "OPTIONS":
                return await call_next(request)
            if not request.url.path.startswith(f"{root_path}/v1"):
                return await call_next(request)
            if request.headers.get("Authorization") != "Bearer " + token:
                return JSONResponse(content={"error": "Unauthorized"},
                                    status_code=401)
            return await call_next(request)

    @app.middleware("http")
    async def add_request_id(request: Request, call_next):
        request_id = request.headers.get("X-Request-Id") or uuid.uuid4().hex
        response = await call_next(request)
        response.headers["X-Request-Id"] = request_id
        return response

    for middleware in args.middleware:
        module_path, object_name = middleware.rsplit(".", 1)
        imported = getattr(importlib.import_module(module_path), object_name)
        if inspect.isclass(imported):
            app.add_middleware(imported)
        elif inspect.iscoroutinefunction(imported):
            app.middleware("http")(imported)
        else:
            raise ValueError(f"Invalid middleware {middleware}. "
                             f"Must be a function or a class.")

    return app


def init_app_state(
    engine_client: EngineClient,
    model_config: ModelConfig,
    state: State,
    args: Namespace,
) -> None:
    if args.served_model_name is not None:
        served_model_names = args.served_model_name
    else:
        served_model_names = [args.model]

    if args.disable_log_requests:
        request_logger = None
    else:
        request_logger = RequestLogger(max_log_len=args.max_log_len)

    base_model_paths = [
        BaseModelPath(name=name, model_path=args.model)
        for name in served_model_names
    ]

    state.engine_client = engine_client
    state.log_stats = not args.disable_log_stats

    state.openai_serving_chat = OpenAIServingChat(
        engine_client,
        model_config,
        base_model_paths,
        args.response_role,
        lora_modules=args.lora_modules,
        prompt_adapters=args.prompt_adapters,
        request_logger=request_logger,
        chat_template=args.chat_template,
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
        enable_auto_tools=args.enable_auto_tool_choice,
        tool_parser=args.tool_call_parser,
        enable_prompt_tokens_details=args.enable_prompt_tokens_details,
    ) if model_config.task == "generate" else None
    state.openai_serving_completion = OpenAIServingCompletion(
        engine_client,
        model_config,
        base_model_paths,
        lora_modules=args.lora_modules,
        prompt_adapters=args.prompt_adapters,
        request_logger=request_logger,
        return_tokens_as_token_ids=args.return_tokens_as_token_ids,
    ) if model_config.task == "generate" else None
    state.openai_serving_embedding = OpenAIServingEmbedding(
        engine_client,
        model_config,
        base_model_paths,
        request_logger=request_logger,
        chat_template=args.chat_template,
    ) if model_config.task == "embedding" else None
    state.openai_serving_tokenization = OpenAIServingTokenization(
        engine_client,
        model_config,
        base_model_paths,
        lora_modules=args.lora_modules,
        request_logger=request_logger,
        chat_template=args.chat_template,
    )


def create_server_socket(addr: Tuple[str, int]) -> socket.socket:
    family = socket.AF_INET
    if is_valid_ipv6_address(addr[0]):
        family = socket.AF_INET6

    sock = socket.socket(family=family, type=socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    sock.bind(addr)

    return sock


async def run_server(args, **uvicorn_kwargs) -> None:
    logger.info("vLLM API server version %s", VLLM_VERSION)
    logger.info("args: %s", args)

    if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
        ToolParserManager.import_tool_parser(args.tool_parser_plugin)

    valide_tool_parses = ToolParserManager.tool_parsers.keys()
    if args.enable_auto_tool_choice \
        and args.tool_call_parser not in valide_tool_parses:
        raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
                       f"(chose from {{ {','.join(valide_tool_parses)} }})")

    # workaround to make sure that we bind the port before the engine is set up.
    # This avoids race conditions with ray.
    # see https://github.com/vllm-project/vllm/issues/8204
    sock_addr = (args.host or "", args.port)
    sock = create_server_socket(sock_addr)

    def signal_handler(*_) -> None:
        # Interrupt server on sigterm while initializing
        raise KeyboardInterrupt("terminated")

    signal.signal(signal.SIGTERM, signal_handler)

    async with build_async_engine_client(args) as engine_client:
        app = build_app(args)

        model_config = await engine_client.get_model_config()
        init_app_state(engine_client, model_config, app.state, args)

        shutdown_task = await serve_http(
            app,
            host=args.host,
            port=args.port,
            log_level=args.uvicorn_log_level,
            timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
            ssl_keyfile=args.ssl_keyfile,
            ssl_certfile=args.ssl_certfile,
            ssl_ca_certs=args.ssl_ca_certs,
            ssl_cert_reqs=args.ssl_cert_reqs,
            **uvicorn_kwargs,
        )

    # NB: Await server shutdown only after the backend context is exited
    await shutdown_task

    sock.close()


if __name__ == "__main__":
    # NOTE(simon):
    # This section should be in sync with vllm/scripts.py for CLI entrypoints.
    parser = FlexibleArgumentParser(
        description="vLLM OpenAI-Compatible RESTful API server.")
    parser = make_arg_parser(parser)
    args = parser.parse_args()
    validate_parsed_serve_args(args)

    uvloop.run(run_server(args))