Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +100 -0
- car.csv +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""car_price.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1rtMdlilQhGBozNcdxDeSkuEthtwAz7-L
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings('ignore')
|
14 |
+
|
15 |
+
dataset = pd.read_csv('car.csv')
|
16 |
+
df = dataset.copy()
|
17 |
+
|
18 |
+
def other_values(df,col,n):
|
19 |
+
tc = df[col].value_counts()
|
20 |
+
ov = tc[tc<=n].index
|
21 |
+
df[col] = df[col].apply(lambda x: 'Other' if x in ov else x)
|
22 |
+
|
23 |
+
def datacleanning(X):
|
24 |
+
X = X.drop_duplicates()
|
25 |
+
X.dropna(axis=0, inplace=True)
|
26 |
+
if 'Unnamed: 0' in X.columns:
|
27 |
+
X.drop('Unnamed: 0', axis=1, inplace=True)
|
28 |
+
other_values(X, 'Company Name', 100)
|
29 |
+
other_values(X, 'Model Name', 100)
|
30 |
+
other_values(X, 'Color', 170)
|
31 |
+
return X
|
32 |
+
|
33 |
+
from sklearn.model_selection import train_test_split
|
34 |
+
def train_test(df):
|
35 |
+
X=df.drop('Price',axis=1)
|
36 |
+
y=df['Price']
|
37 |
+
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=43)
|
38 |
+
return X_train,X_test,y_train,y_test
|
39 |
+
|
40 |
+
def dummie(X_train,X_test):
|
41 |
+
X_train = pd.get_dummies(X_train,drop_first=True)
|
42 |
+
X_test = pd.get_dummies(X_test,drop_first=True)
|
43 |
+
return X_train,X_test
|
44 |
+
|
45 |
+
def final_df(df):
|
46 |
+
df =datacleanning(df)
|
47 |
+
X_train,X_test,y_train,y_test = train_test(df)
|
48 |
+
X_train,X_test = dummie(X_train,X_test)
|
49 |
+
return df,X_train,X_test,y_train,y_test
|
50 |
+
|
51 |
+
from sklearn.ensemble import HistGradientBoostingRegressor
|
52 |
+
def model_fit(X_train,y_train):
|
53 |
+
hgb = HistGradientBoostingRegressor()
|
54 |
+
hgb.fit(X_train,y_train)
|
55 |
+
return hgb
|
56 |
+
|
57 |
+
model = model_fit(X_train,y_train)
|
58 |
+
|
59 |
+
!pip install streamlit
|
60 |
+
|
61 |
+
df = pd.get_dummies(df,drop_first=True)
|
62 |
+
|
63 |
+
import streamlit as st
|
64 |
+
|
65 |
+
def price(companyName,modelName,modelYear,locaiton,mileage,engineType,engineCapacity,color,assembly,bodyType,transmissionType,registrationStatus):
|
66 |
+
input_data = pd.DataFrame({
|
67 |
+
'Company Name':[companyName],
|
68 |
+
'Model Name':[modelName],
|
69 |
+
'Model Year':[modelYear],
|
70 |
+
'Location':[locaiton],
|
71 |
+
'Mileage':[mileage],
|
72 |
+
'Engine Type':[engineType],
|
73 |
+
'Engine Capacity':[engineCapacity],
|
74 |
+
'Color':[color],
|
75 |
+
'Assembly':[assembly],
|
76 |
+
'Body Type':[bodyType],
|
77 |
+
'Transmission Type':[transmissionType],
|
78 |
+
'Registration Status':[registrationStatus]
|
79 |
+
})
|
80 |
+
prediction=model.predict(input_data)[0]
|
81 |
+
return prediction
|
82 |
+
st.title('Car Price Prediction:car @yusufenes')
|
83 |
+
st.write('Please Chose Car Specifications')
|
84 |
+
companyName = st.selectbox('Company Name',df['Company Name'].unique())
|
85 |
+
modelName = st.selectbox('Model Name',df[df['Company Name']==companyName]['Model Name'].unique())
|
86 |
+
modelYear = st.selectbox('Model Year',df[(df['Company Name']==companyName)&(df['Model Name'] == modelName)]['Model Year'].unique())
|
87 |
+
locaiton = st.selectbox('Location',df['Location'].unique())
|
88 |
+
mileage = st.number_input('Mileage',df['Mileage'].min(),df['Mileage'].max())
|
89 |
+
engineType = st.selectbox('Engine Type',df['Engine Type'].unique())
|
90 |
+
engineCapacity = st.number_input('Engine Capacity',df['Engine Capacity'].min(),df['Engine Capacity'].max())
|
91 |
+
color = st.selectbox('Color',df['Color'].unique())
|
92 |
+
assembly = st.selectbox('Assembly',df['Assembly'].unique())
|
93 |
+
bodyType = st.selectbox('Body Type',df['Body Type'].unique())
|
94 |
+
transmissionType = st.selectbox('Transmission Type',df['Transmission Type'].unique())
|
95 |
+
registrationStatus = st.radio('Registration Status',['Yes','No'])
|
96 |
+
if st.button('Predict'):
|
97 |
+
pred=price(companyName,modelName,modelYear,locaiton,mileage,engineType,engineCapacity,color,assembly,bodyType,transmissionType,registrationStatus)
|
98 |
+
st.success(f'The predicted price is {pred} $')
|
99 |
+
st.balloons()
|
100 |
+
|
car.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.31.1
|
2 |
+
scikit-learn==1.4.1.post1
|
3 |
+
pandas==2.1.0
|