Spaces:
Build error
Build error
File size: 8,606 Bytes
daf0288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# -*- coding: utf-8 -*-
"""Unitable_run_double_check.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1oaXgLoIaNY8SJwUQB_vMyiXPNZGKOIpb
"""
from typing import Tuple, List, Sequence, Optional, Union
from pathlib import Path
import re
import torch
import tokenizers as tk
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib import patches
from torchvision import transforms
from torch import nn, Tensor
from functools import partial
from bs4 import BeautifulSoup as bs
import warnings
import time
from src.model import EncoderDecoder, ImgLinearBackbone, Encoder, Decoder
from src.utils import subsequent_mask, pred_token_within_range, greedy_sampling, bbox_str_to_token_list, cell_str_to_token_list, html_str_to_token_list, build_table_from_html_and_cell, html_table_template
from src.trainer.utils import VALID_HTML_TOKEN, VALID_BBOX_TOKEN, INVALID_CELL_TOKEN
warnings.filterwarnings('ignore')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Check all model weights have been downloaded to experiments/unitable_weights
MODEL_FILE_NAME = ["unitable_large_structure.pt", "unitable_large_bbox.pt", "unitable_large_content.pt"]
MODEL_DIR = Path("./experiments/unitable_weights")
assert all([(MODEL_DIR / name).is_file() for name in MODEL_FILE_NAME]), f"Please download model weights from HuggingFace: https://huggingface.co/poloclub/UniTable/tree/main"
# Load tabular image
image_path = "../TestingFilesImages/table_Test1.png"
image = Image.open(image_path).convert("RGB")
image_size = image.size
fig, ax = plt.subplots(figsize=(12, 10))
ax.imshow(image)
# UniTable large model
d_model = 768
patch_size = 16
nhead = 12
dropout = 0.2
start= time.time()
backbone = ImgLinearBackbone(d_model=d_model, patch_size=patch_size)
encoder = Encoder(
d_model=d_model,
nhead=nhead,
dropout = dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
)
decoder = Decoder(
d_model=d_model,
nhead=nhead,
dropout = dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
)
end= time.time()
time1 = end-start
print("time to load" + str(time1))
def autoregressive_decode(
model: EncoderDecoder,
image: Tensor,
prefix: Sequence[int],
max_decode_len: int,
eos_id: int,
token_whitelist: Optional[Sequence[int]] = None,
token_blacklist: Optional[Sequence[int]] = None,
) -> Tensor:
model.eval()
with torch.no_grad():
memory = model.encode(image)
context = torch.tensor(prefix, dtype=torch.int32).repeat(image.shape[0], 1).to(device)
for _ in range(max_decode_len):
eos_flag = [eos_id in k for k in context]
if all(eos_flag):
break
with torch.no_grad():
causal_mask = subsequent_mask(context.shape[1]).to(device)
logits = model.decode(
memory, context, tgt_mask=causal_mask, tgt_padding_mask=None
)
logits = model.generator(logits)[:, -1, :]
logits = pred_token_within_range(
logits.detach(),
white_list=token_whitelist,
black_list=token_blacklist,
)
next_probs, next_tokens = greedy_sampling(logits)
context = torch.cat([context, next_tokens], dim=1)
return context
def load_vocab_and_model(
vocab_path: Union[str, Path],
max_seq_len: int,
model_weights: Union[str, Path],
) -> Tuple[tk.Tokenizer, EncoderDecoder]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vocab = tk.Tokenizer.from_file(vocab_path)
model = EncoderDecoder(
backbone=backbone,
encoder=encoder,
decoder=decoder,
vocab_size=vocab.get_vocab_size(),
d_model=d_model,
padding_idx=vocab.token_to_id("<pad>"),
max_seq_len=max_seq_len,
dropout=dropout,
norm_layer=partial(nn.LayerNorm, eps=1e-6)
)
model.load_state_dict(torch.load(model_weights, map_location=device))
model = model.to(device)
return vocab, model
def image_to_tensor(image: Image, size: Tuple[int, int]) -> Tensor:
T = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.86597056,0.88463002,0.87491087], std = [0.20686628,0.18201602,0.18485524])
])
image_tensor = T(image)
image_tensor = image_tensor.to(device).unsqueeze(0)
return image_tensor
def rescale_bbox(
bbox: Sequence[Sequence[float]],
src: Tuple[int, int],
tgt: Tuple[int, int]
) -> Sequence[Sequence[float]]:
assert len(src) == len(tgt) == 2
ratio = [tgt[0] / src[0], tgt[1] / src[1]] * 2
bbox = [[int(round(i * j)) for i, j in zip(entry, ratio)] for entry in bbox]
return bbox
# Table structure extraction
import time
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_html.json",
max_seq_len=784,
model_weights=MODEL_DIR / MODEL_FILE_NAME[0],
)
end= time.time()
time1 = end-start
print("time to load structure model " + str(time1))
# Image transformation
image_tensor = image_to_tensor(image, size=(448, 448))
# Inference
start= time.time()
pred_html = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[html]")],
max_decode_len=512,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=[vocab.token_to_id(i) for i in VALID_HTML_TOKEN],
token_blacklist = None
)
end= time.time()
time1 = end-start
print("time to do structure inference" + str(time1))
# Convert token id to token text
pred_html = pred_html.detach().cpu().numpy()[0]
pred_html = vocab.decode(pred_html, skip_special_tokens=False)
pred_html = html_str_to_token_list(pred_html)
# print(pred_html)
# Table cell bbox detection
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_bbox.json",
max_seq_len=1024,
model_weights=MODEL_DIR / MODEL_FILE_NAME[1],
)
end= time.time()
time1 = end-start
print("time to load cell bbox detection " + str(time1))
# Image transformation
image_tensor = image_to_tensor(image, size=(448, 448))
# Inference
start= time.time()
pred_bbox = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[bbox]")],
max_decode_len=1024,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=[vocab.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
token_blacklist = None
)
end= time.time()
time1 = end-start
print("time to do cell bbox detection " + str(time1))
# Convert token id to token text
pred_bbox = pred_bbox.detach().cpu().numpy()[0]
pred_bbox = vocab.decode(pred_bbox, skip_special_tokens=False)
# print(pred_bbox)
# Visualize detected bbox
pred_bbox = bbox_str_to_token_list(pred_bbox)
pred_bbox = rescale_bbox(pred_bbox, src=(448, 448), tgt=image_size)
fig, ax = plt.subplots(figsize=(12, 10))
for i in pred_bbox:
rect = patches.Rectangle(i[:2], i[2] - i[0], i[3] - i[1], linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.set_axis_off()
ax.imshow(image)
# Table cell content recognition
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_cell_6k.json",
max_seq_len=200,
model_weights=MODEL_DIR / MODEL_FILE_NAME[2],
)
end= time.time()
time1 = end-start
print("time to load cell content " + str(time1))
# Cell image cropping and transformation
image_tensor = [image_to_tensor(image.crop(bbox), size=(112, 448)) for bbox in pred_bbox]
image_tensor = torch.cat(image_tensor, dim=0)
start= time.time()
# Inference
pred_cell = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[cell]")],
max_decode_len=200,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=None,
token_blacklist = [vocab.token_to_id(i) for i in INVALID_CELL_TOKEN]
)
end= time.time()
time1 = end-start
print("time to do cell content " + str(time1))
# Convert token id to token text
pred_cell = pred_cell.detach().cpu().numpy()
pred_cell = vocab.decode_batch(pred_cell, skip_special_tokens=False)
pred_cell = [cell_str_to_token_list(i) for i in pred_cell]
pred_cell = [re.sub(r'(\d).\s+(\d)', r'\1.\2', i) for i in pred_cell]
# print(pred_cell)
# Combine the table structure and cell content
pred_code = build_table_from_html_and_cell(pred_html, pred_cell)
pred_code = "".join(pred_code)
pred_code = html_table_template(pred_code)
# Display the HTML table
soup = bs(pred_code)
table_code = soup.prettify()
# Raw HTML table code
print(table_code) |