Spaces:
Build error
Build error
File size: 9,638 Bytes
daf0288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# code adapted from https://github.com/ibm-aur-nlp/PubTabNet/blob/master/src/metric.py
# tree edit distance video explanation: https://www.youtube.com/watch?v=6Ur8B35xCj8
import apted
import distance
from collections import deque
from lxml import etree, html
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
from typing import Tuple
class TableTree(apted.helpers.Tree):
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation."""
if self.tag == "td":
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % (
self.tag,
self.colspan,
self.rowspan,
self.content,
)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(apted.Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value."""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1."""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (
(node1.tag != node2.tag)
or (node1.colspan != node2.colspan)
or (node1.rowspan != node2.rowspan)
):
return 1.0
if node1.tag == "td":
if node1.content or node2.content:
return self.normalized_distance(node1.content, node2.content)
return 0.0
class TEDS(object):
"""Tree Edit Distance basead Similarity"""
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (
n_jobs >= 1
), "n_jobs must be an integer greather than 1"
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
"""Tokenizes table cells"""
self.__tokens__.append("<%s>" % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != "unk":
self.__tokens__.append("</%s>" % node.tag)
if node.tag != "td" and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
"""Converts HTML tree to the format required by apted"""
global __tokens__
if node.tag == "td":
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(
node.tag,
int(node.attrib.get("colspan", "1")),
int(node.attrib.get("rowspan", "1")),
cell,
*deque(),
)
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != "td":
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
"""Computes TEDS score between the prediction and the ground truth of a
given sample
"""
if (not pred) or (not true):
return 0.0
parser = html.HTMLParser(remove_comments=True, encoding="utf-8")
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath("body/table") and true.xpath("body/table"):
pred = pred.xpath("body/table")[0]
true = true.xpath("body/table")[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = apted.APTED(
tree_pred, tree_true, CustomConfig()
).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
def batch_evaluate(self, results_json):
"""Computes TEDS score between the prediction and the ground truth of
a batch of samples
@params pred_json: {'FILENAME': 'HTML CODE', ...}
@params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
@output: {'FILENAME': 'TEDS SCORE', ...}
"""
samples = results_json.keys()
print(f"Total samples: {len(samples)}")
if self.n_jobs == 1:
scores = [
self.evaluate(
results_json[filename]["pred"],
results_json[filename]["gt"],
)
for filename in tqdm(samples)
]
else:
inputs = [
{
"pred": results_json[filename]["pred"],
"true": results_json[filename]["gt"],
}
for filename in samples
]
scores = parallel_process(
inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1
)
output = dict()
for i, j in zip(samples, scores):
if "span" in results_json[i]["gt"]:
output[i] = dict(scores=j, type="complex")
else:
output[i] = dict(scores=j, type="simple")
# scores = dict(zip(samples, scores))
return output
def parallel_process(array, function, n_jobs=16, use_kwargs=False, front_num=0):
"""
A parallel version of the map function with a progress bar.
Args:
array (array-like): An array to iterate over.
function (function): A python function to apply to the elements of array
n_jobs (int, default=16): The number of cores to use
use_kwargs (boolean, default=False): Whether to consider the elements of array as dictionaries of
keyword arguments to function
front_num (int, default=3): The number of iterations to run serially before kicking off the parallel job.
Useful for catching bugs
Returns:
[function(array[0]), function(array[1]), ...]
"""
# We run the first few iterations serially to catch bugs
if front_num > 0:
front = [
function(**a) if use_kwargs else function(a) for a in array[:front_num]
]
else:
front = []
# If we set n_jobs to 1, just run a list comprehension. This is useful for benchmarking and debugging.
if n_jobs == 1:
return front + [
function(**a) if use_kwargs else function(a)
for a in tqdm(array[front_num:])
]
# Assemble the workers
with ProcessPoolExecutor(max_workers=n_jobs) as pool:
# Pass the elements of array into function
if use_kwargs:
futures = [pool.submit(function, **a) for a in array[front_num:]]
else:
futures = [pool.submit(function, a) for a in array[front_num:]]
kwargs = {
"total": len(futures),
"unit": "it",
"unit_scale": True,
"leave": True,
}
# Print out the progress as tasks complete
for f in tqdm(as_completed(futures), **kwargs):
pass
out = []
# Get the results from the futures.
for i, future in tqdm(enumerate(futures)):
try:
out.append(future.result())
except Exception as e:
out.append(e)
return front + out
if __name__ == "__main__":
import json
import pprint
import numpy as np
import argparse
parser = argparse.ArgumentParser(description="TEDS Computation")
parser.add_argument("-f", "--file", help="path to html table results in json file")
parser.add_argument("-t", "--type", help="html, html+cell")
parser.add_argument("-n", "--njob", default=200, help="number of jobs in parallel")
args = parser.parse_args()
results_file = args.file
with open(results_file, "r") as f:
results_json = json.load(f)
if args.type == "html":
s_only = True
else:
s_only = False
teds = TEDS(structure_only=s_only, n_jobs=args.njob)
scores = teds.batch_evaluate(results_json)
pp = pprint.PrettyPrinter()
pp.pprint(scores)
# compute teds for simple and complex tables
total, simple, complex = list(), list(), list()
for _, obj in scores.items():
if obj["type"] == "simple":
simple.append(obj["scores"])
elif obj["type"] == "complex":
complex.append(obj["scores"])
total.append(obj["scores"])
total, simple, complex = np.array(total), np.array(simple), np.array(complex)
print(
f"Simple: {np.mean(simple)} \nComplex: {np.mean(complex)} \nTotal: {np.mean(total)}"
)
|