File size: 9,638 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# code adapted from https://github.com/ibm-aur-nlp/PubTabNet/blob/master/src/metric.py
# tree edit distance video explanation: https://www.youtube.com/watch?v=6Ur8B35xCj8
import apted
import distance
from collections import deque
from lxml import etree, html
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
from typing import Tuple


class TableTree(apted.helpers.Tree):
    def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
        self.tag = tag
        self.colspan = colspan
        self.rowspan = rowspan
        self.content = content
        self.children = list(children)

    def bracket(self):
        """Show tree using brackets notation."""
        if self.tag == "td":
            result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % (
                self.tag,
                self.colspan,
                self.rowspan,
                self.content,
            )
        else:
            result = '"tag": %s' % self.tag
        for child in self.children:
            result += child.bracket()
        return "{{{}}}".format(result)


class CustomConfig(apted.Config):
    @staticmethod
    def maximum(*sequences):
        """Get maximum possible value."""
        return max(map(len, sequences))

    def normalized_distance(self, *sequences):
        """Get distance from 0 to 1."""
        return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)

    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (
            (node1.tag != node2.tag)
            or (node1.colspan != node2.colspan)
            or (node1.rowspan != node2.rowspan)
        ):
            return 1.0
        if node1.tag == "td":
            if node1.content or node2.content:
                return self.normalized_distance(node1.content, node2.content)
        return 0.0


class TEDS(object):
    """Tree Edit Distance basead Similarity"""

    def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
        assert isinstance(n_jobs, int) and (
            n_jobs >= 1
        ), "n_jobs must be an integer greather than 1"
        self.structure_only = structure_only
        self.n_jobs = n_jobs
        self.ignore_nodes = ignore_nodes
        self.__tokens__ = []

    def tokenize(self, node):
        """Tokenizes table cells"""
        self.__tokens__.append("<%s>" % node.tag)
        if node.text is not None:
            self.__tokens__ += list(node.text)
        for n in node.getchildren():
            self.tokenize(n)
        if node.tag != "unk":
            self.__tokens__.append("</%s>" % node.tag)
        if node.tag != "td" and node.tail is not None:
            self.__tokens__ += list(node.tail)

    def load_html_tree(self, node, parent=None):
        """Converts HTML tree to the format required by apted"""
        global __tokens__
        if node.tag == "td":
            if self.structure_only:
                cell = []
            else:
                self.__tokens__ = []
                self.tokenize(node)
                cell = self.__tokens__[1:-1].copy()
            new_node = TableTree(
                node.tag,
                int(node.attrib.get("colspan", "1")),
                int(node.attrib.get("rowspan", "1")),
                cell,
                *deque(),
            )
        else:
            new_node = TableTree(node.tag, None, None, None, *deque())
        if parent is not None:
            parent.children.append(new_node)
        if node.tag != "td":
            for n in node.getchildren():
                self.load_html_tree(n, new_node)
        if parent is None:
            return new_node

    def evaluate(self, pred, true):
        """Computes TEDS score between the prediction and the ground truth of a
        given sample
        """
        if (not pred) or (not true):
            return 0.0
        parser = html.HTMLParser(remove_comments=True, encoding="utf-8")
        pred = html.fromstring(pred, parser=parser)
        true = html.fromstring(true, parser=parser)
        if pred.xpath("body/table") and true.xpath("body/table"):
            pred = pred.xpath("body/table")[0]
            true = true.xpath("body/table")[0]
            if self.ignore_nodes:
                etree.strip_tags(pred, *self.ignore_nodes)
                etree.strip_tags(true, *self.ignore_nodes)
            n_nodes_pred = len(pred.xpath(".//*"))
            n_nodes_true = len(true.xpath(".//*"))
            n_nodes = max(n_nodes_pred, n_nodes_true)
            tree_pred = self.load_html_tree(pred)
            tree_true = self.load_html_tree(true)
            distance = apted.APTED(
                tree_pred, tree_true, CustomConfig()
            ).compute_edit_distance()
            return 1.0 - (float(distance) / n_nodes)
        else:
            return 0.0

    def batch_evaluate(self, results_json):
        """Computes TEDS score between the prediction and the ground truth of
        a batch of samples
        @params pred_json: {'FILENAME': 'HTML CODE', ...}
        @params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
        @output: {'FILENAME': 'TEDS SCORE', ...}
        """
        samples = results_json.keys()
        print(f"Total samples: {len(samples)}")
        if self.n_jobs == 1:
            scores = [
                self.evaluate(
                    results_json[filename]["pred"],
                    results_json[filename]["gt"],
                )
                for filename in tqdm(samples)
            ]
        else:
            inputs = [
                {
                    "pred": results_json[filename]["pred"],
                    "true": results_json[filename]["gt"],
                }
                for filename in samples
            ]
            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1
            )
        output = dict()
        for i, j in zip(samples, scores):
            if "span" in results_json[i]["gt"]:
                output[i] = dict(scores=j, type="complex")
            else:
                output[i] = dict(scores=j, type="simple")
        # scores = dict(zip(samples, scores))
        return output


def parallel_process(array, function, n_jobs=16, use_kwargs=False, front_num=0):
    """
    A parallel version of the map function with a progress bar.

    Args:
        array (array-like): An array to iterate over.
        function (function): A python function to apply to the elements of array
        n_jobs (int, default=16): The number of cores to use
        use_kwargs (boolean, default=False): Whether to consider the elements of array as dictionaries of
            keyword arguments to function
        front_num (int, default=3): The number of iterations to run serially before kicking off the parallel job.
            Useful for catching bugs
    Returns:
        [function(array[0]), function(array[1]), ...]
    """
    # We run the first few iterations serially to catch bugs
    if front_num > 0:
        front = [
            function(**a) if use_kwargs else function(a) for a in array[:front_num]
        ]
    else:
        front = []
    # If we set n_jobs to 1, just run a list comprehension. This is useful for benchmarking and debugging.
    if n_jobs == 1:
        return front + [
            function(**a) if use_kwargs else function(a)
            for a in tqdm(array[front_num:])
        ]
    # Assemble the workers
    with ProcessPoolExecutor(max_workers=n_jobs) as pool:
        # Pass the elements of array into function
        if use_kwargs:
            futures = [pool.submit(function, **a) for a in array[front_num:]]
        else:
            futures = [pool.submit(function, a) for a in array[front_num:]]
        kwargs = {
            "total": len(futures),
            "unit": "it",
            "unit_scale": True,
            "leave": True,
        }
        # Print out the progress as tasks complete
        for f in tqdm(as_completed(futures), **kwargs):
            pass
    out = []
    # Get the results from the futures.
    for i, future in tqdm(enumerate(futures)):
        try:
            out.append(future.result())
        except Exception as e:
            out.append(e)
    return front + out


if __name__ == "__main__":
    import json
    import pprint
    import numpy as np
    import argparse

    parser = argparse.ArgumentParser(description="TEDS Computation")

    parser.add_argument("-f", "--file", help="path to html table results in json file")
    parser.add_argument("-t", "--type", help="html, html+cell")
    parser.add_argument("-n", "--njob", default=200, help="number of jobs in parallel")
    args = parser.parse_args()

    results_file = args.file
    with open(results_file, "r") as f:
        results_json = json.load(f)

    if args.type == "html":
        s_only = True
    else:
        s_only = False
    teds = TEDS(structure_only=s_only, n_jobs=args.njob)
    scores = teds.batch_evaluate(results_json)
    pp = pprint.PrettyPrinter()
    pp.pprint(scores)

    # compute teds for simple and complex tables
    total, simple, complex = list(), list(), list()
    for _, obj in scores.items():
        if obj["type"] == "simple":
            simple.append(obj["scores"])
        elif obj["type"] == "complex":
            complex.append(obj["scores"])
        total.append(obj["scores"])

    total, simple, complex = np.array(total), np.array(simple), np.array(complex)
    print(
        f"Simple: {np.mean(simple)} \nComplex: {np.mean(complex)} \nTotal: {np.mean(total)}"
    )