Spaces:
Build error
Build error
File size: 17,152 Bytes
daf0288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
from typing import Tuple, List, Union, Dict, Optional
import torch
import wandb
import json
import os
from torch import nn, Tensor, autograd
from torch.utils.data import DataLoader
from omegaconf import DictConfig
from hydra.utils import instantiate
import logging
from pathlib import Path
from torch.nn.parallel import DistributedDataParallel as DDP
import tokenizers as tk
import torch.nn.functional as F
from .utils import (
Batch,
configure_optimizer_weight_decay,
turn_off_beit_grad,
VALID_HTML_TOKEN,
INVALID_CELL_TOKEN,
VALID_BBOX_TOKEN,
)
from ..utils import (
printer,
compute_grad_norm,
count_total_parameters,
batch_autoregressive_decode,
combine_filename_pred_gt,
)
SNAPSHOT_KEYS = set(["EPOCH", "STEP", "OPTIMIZER", "LR_SCHEDULER", "MODEL", "LOSS"])
class TableTrainer:
"""A trainer for table recognition. The supported tasks are:
1) table structure extraction
2) table cell bbox detection
3) table cell content recognition
Args:
----
device: gpu id
vocab: a vocab shared among all tasks
model: model architecture
log: logger
exp_dir: the experiment directory that saves logs, wandb files, model weights, and checkpoints (snapshots)
snapshot: specify which snapshot to use, only used in training
model_weights: specify which model weight to use, only used in testing
beit_pretrained_weights: load SSL pretrained visual encoder
freeze_beit_epoch: freeze beit weights for the first {freeze_beit_epoch} epochs
"""
def __init__(
self,
device: int,
vocab: tk.Tokenizer,
model: nn.Module,
log: logging.Logger,
exp_dir: Path,
snapshot: Path = None,
model_weights: str = None,
beit_pretrained_weights: str = None,
freeze_beit_epoch: int = None,
) -> None:
self.device = device
self.log = log
self.exp_dir = exp_dir
self.vocab = vocab
self.padding_idx = vocab.token_to_id("<pad>")
self.freeze_beit_epoch = freeze_beit_epoch
# loss for training html, cell
self.criterion = nn.CrossEntropyLoss(ignore_index=self.padding_idx)
self.model = model
if (
beit_pretrained_weights is not None
and Path(beit_pretrained_weights).is_file()
):
self.load_pretrained_beit(Path(beit_pretrained_weights))
assert (
snapshot is None or model_weights is None
), "Cannot set snapshot and model_weights at the same time!"
if snapshot is not None and snapshot.is_file():
self.snapshot = self.load_snapshot(snapshot)
self.model.load_state_dict(self.snapshot["MODEL"])
self.start_epoch = self.snapshot["EPOCH"]
self.global_step = self.snapshot["STEP"]
elif model_weights is not None and Path(model_weights).is_file():
self.load_model(Path(model_weights))
else:
self.snapshot = None
self.start_epoch = 0
self.global_step = 0
if freeze_beit_epoch and freeze_beit_epoch > 0:
self._freeze_beit()
self.model = self.model.to(device)
self.model = DDP(self.model, device_ids=[device])
# https://discuss.pytorch.org/t/extra-10gb-memory-on-gpu-0-in-ddp-tutorial/118113
torch.cuda.set_device(device) # master gpu takes up extra memory
torch.cuda.empty_cache()
def _freeze_beit(self):
if self.start_epoch < self.freeze_beit_epoch:
turn_off_beit_grad(self.model)
self.log.info(
printer(
self.device,
f"Lock SSL params for {self.freeze_beit_epoch} epochs (params: {count_total_parameters(self.model) / 1e6:.2f}M) - Current epoch {self.start_epoch + 1}",
)
)
else:
self.log.info(
printer(
self.device,
f"Unlock all weights (params: {count_total_parameters(self.model) / 1e6:.2f}M) - Current epoch {self.start_epoch + 1}",
)
)
def train_epoch(
self,
epoch: int,
target: str,
loss_weights: List[float],
grad_clip: float = None,
):
avg_loss = 0.0
# load data from dataloader
for i, obj in enumerate(self.train_dataloader):
batch = Batch(device=self.device, target=target, vocab=self.vocab, obj=obj)
with autograd.detect_anomaly():
loss, _ = batch.inference(
self.model,
criterion=self.criterion,
criterion_bbox=self.criterion_bbox,
loss_weights=loss_weights,
)
total_loss = loss["total"]
self.optimizer.zero_grad()
total_loss.backward()
if grad_clip:
nn.utils.clip_grad_norm_(
self.model.parameters(), max_norm=grad_clip
)
self.optimizer.step()
total_loss = total_loss.detach().cpu().data
avg_loss += total_loss
self.lr_scheduler.step()
self.global_step += 1
if i % 10 == 0:
grad_norm = compute_grad_norm(self.model)
lr = self.optimizer.param_groups[0]["lr"]
# elapsed = time.time() - start
loss_info = f"Loss {total_loss:.3f} ({avg_loss / (i + 1):.3f})"
if not isinstance(loss["html"], int):
loss_info += f" Html {loss['html'].detach().cpu().data:.3f}"
if not isinstance(loss["cell"], int):
loss_info += f" Cell {loss['cell'].detach().cpu().data:.3f}"
if not isinstance(loss["bbox"], int):
loss_info += f" Bbox {loss['bbox'].detach().cpu().data:.3f}"
self.log.info(
printer(
self.device,
f"Epoch {epoch} Step {i + 1}/{len(self.train_dataloader)} | {loss_info} | Grad norm {grad_norm:.3f} | lr {lr:5.1e}",
)
)
if i % 100 == 0 and self.device == 0:
log_info = {
"epoch": epoch,
"train_total_loss": total_loss,
"learning rate": lr,
"grad_norm": grad_norm,
}
wandb.log(
log_info,
step=self.global_step,
)
def train(
self,
train_dataloader: DataLoader,
valid_dataloader: DataLoader,
train_cfg: DictConfig,
valid_cfg: DictConfig,
):
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
# ensure correct weight decay: https://github.com/karpathy/minGPT/blob/37baab71b9abea1b76ab957409a1cc2fbfba8a26/mingpt/model.py#L215
optim_params = configure_optimizer_weight_decay(
self.model.module, weight_decay=train_cfg.optimizer.weight_decay
)
self.optimizer = instantiate(train_cfg.optimizer, optim_params)
self.lr_scheduler = instantiate(
train_cfg.lr_scheduler, optimizer=self.optimizer
)
if self.snapshot is not None:
self.optimizer.load_state_dict(self.snapshot["OPTIMIZER"])
self.lr_scheduler.load_state_dict(self.snapshot["LR_SCHEDULER"])
self.criterion_bbox = None
if "bbox" in train_cfg.target:
tmp = [
self.vocab.token_to_id(i)
for i in VALID_BBOX_TOKEN[
: train_cfg.img_size[0] + 2
] # +1 for <eos> +1 for bbox == img_size
]
tmp = [1.0 if i in tmp else 0.0 for i in range(self.vocab.get_vocab_size())]
self.criterion_bbox = nn.CrossEntropyLoss(
weight=torch.tensor(tmp, device=self.device),
ignore_index=self.padding_idx,
)
best_loss = float("inf")
self.model.train()
if self.freeze_beit_epoch and self.start_epoch < self.freeze_beit_epoch:
max_epoch = self.freeze_beit_epoch
else:
max_epoch = train_cfg.epochs
for epoch in range(self.start_epoch, max_epoch):
train_dataloader.sampler.set_epoch(epoch)
self.train_epoch(
epoch,
grad_clip=train_cfg.grad_clip,
target=train_cfg.target,
loss_weights=train_cfg.loss_weights,
)
torch.cuda.empty_cache()
valid_loss = self.valid(valid_cfg)
if self.device == 0:
wandb.log(
{"valid loss (epoch)": valid_loss},
step=self.global_step,
)
if epoch % train_cfg.save_every == 0:
self.save_snapshot(epoch, best_loss)
if valid_loss < best_loss:
self.save_model(epoch)
best_loss = valid_loss
def valid(self, cfg: DictConfig):
total_loss = 0.0
avg_loss = 0.0
total_samples = 0
self.model.eval()
for i, obj in enumerate(self.valid_dataloader):
batch = Batch(
device=self.device, target=cfg.target, vocab=self.vocab, obj=obj
)
with torch.no_grad():
loss, _ = batch.inference(
self.model,
criterion=self.criterion,
criterion_bbox=self.criterion_bbox,
loss_weights=cfg.loss_weights,
)
total_loss = loss["total"]
total_loss = total_loss.detach().cpu().data
avg_loss += total_loss * batch.image.shape[0]
total_samples += batch.image.shape[0]
if i % 10 == 0:
loss_info = f"Loss {total_loss:.3f} ({avg_loss / total_samples:.3f})"
if not isinstance(loss["html"], int):
loss_info += f" Html {loss['html'].detach().cpu().data:.3f}"
if not isinstance(loss["cell"], int):
loss_info += f" Cell {loss['cell'].detach().cpu().data:.3f}"
if not isinstance(loss["bbox"], int):
loss_info += f" Bbox {loss['bbox'].detach().cpu().data:.3f}"
self.log.info(
printer(
self.device,
f"Valid: Step {i + 1}/{len(self.valid_dataloader)} | {loss_info}",
)
)
return avg_loss / total_samples
def test(self, test_dataloader: DataLoader, cfg: DictConfig, save_to: str):
total_result = dict()
for i, obj in enumerate(test_dataloader):
batch = Batch(
device=self.device, target=cfg.target, vocab=self.vocab, obj=obj
)
if cfg.target == "html":
prefix = [self.vocab.token_to_id("[html]")]
valid_token_whitelist = [
self.vocab.token_to_id(i) for i in VALID_HTML_TOKEN
]
valid_token_blacklist = None
elif cfg.target == "cell":
prefix = [self.vocab.token_to_id("[cell]")]
valid_token_whitelist = None
valid_token_blacklist = [
self.vocab.token_to_id(i) for i in INVALID_CELL_TOKEN
]
elif cfg.target == "bbox":
prefix = [self.vocab.token_to_id("[bbox]")]
valid_token_whitelist = [
self.vocab.token_to_id(i)
for i in VALID_BBOX_TOKEN[: cfg.img_size[0]]
]
valid_token_blacklist = None
else:
raise NotImplementedError
pred_id = batch_autoregressive_decode(
device=self.device,
model=self.model,
batch_data=batch,
prefix=prefix,
max_decode_len=cfg.max_seq_len,
eos_id=self.vocab.token_to_id("<eos>"),
valid_token_whitelist=valid_token_whitelist,
valid_token_blacklist=valid_token_blacklist,
sampling=cfg.sampling,
)
if cfg.target == "html":
result = combine_filename_pred_gt(
filename=batch.name,
pred_id=pred_id,
gt_id=batch.html_tgt,
vocab=self.vocab,
type="html",
)
elif cfg.target == "cell":
result = combine_filename_pred_gt(
filename=batch.name,
pred_id=pred_id,
gt_id=batch.cell_tgt,
vocab=self.vocab,
type="cell",
)
elif cfg.target == "bbox":
result = combine_filename_pred_gt(
filename=batch.name,
pred_id=pred_id,
gt_id=batch.bbox_tgt,
vocab=self.vocab,
type="bbox",
)
else:
raise NotImplementedError
total_result.update(result)
if i % 10 == 0:
self.log.info(
printer(
self.device,
f"Test: Step {i + 1}/{len(test_dataloader)}",
)
)
self.log.info(
printer(
self.device,
f"Converting {len(total_result)} samples to html tables ...",
)
)
with open(
os.path.join(save_to, cfg.save_to_prefix + f"_{self.device}.json"),
"w",
encoding="utf-8",
) as f:
json.dump(total_result, f, indent=4)
return total_result
def save_model(self, epoch: int):
filename = Path(self.exp_dir) / "model" / f"epoch{epoch}_model.pt"
torch.save(self.model.module.state_dict(), filename)
self.log.info(printer(self.device, f"Saving model to {filename}"))
filename = Path(self.exp_dir) / "model" / "best.pt"
torch.save(self.model.module.state_dict(), filename)
def load_model(self, path: Union[str, Path]):
self.model.load_state_dict(torch.load(path, map_location="cpu"))
self.log.info(printer(self.device, f"Loading model from {path}"))
def save_snapshot(self, epoch: int, best_loss: float):
state_info = {
"EPOCH": epoch + 1,
"STEP": self.global_step,
"OPTIMIZER": self.optimizer.state_dict(),
"LR_SCHEDULER": self.lr_scheduler.state_dict(),
"MODEL": self.model.module.state_dict(),
"LOSS": best_loss,
}
snapshot_path = Path(self.exp_dir) / "snapshot" / f"epoch{epoch}_snapshot.pt"
torch.save(state_info, snapshot_path)
self.log.info(printer(self.device, f"Saving snapshot to {snapshot_path}"))
def load_snapshot(self, path: Path):
self.log.info(printer(self.device, f"Loading snapshot from {path}"))
snapshot = torch.load(path, map_location="cpu")
assert SNAPSHOT_KEYS.issubset(snapshot.keys())
return snapshot
def load_pretrained_beit(self, path: Path):
self.log.info(printer(self.device, f"Loading pretrained BEiT from {path}"))
beit = torch.load(path, map_location="cpu")
redundant_keys_in_beit = [
"cls_token",
"mask_token",
"generator.weight",
"generator.bias",
]
for key in redundant_keys_in_beit:
if key in beit:
del beit[key]
# max_seq_len in finetuning may go beyond the length in pretraining
if (
self.model.pos_embed.embedding.weight.shape[0]
!= beit["pos_embed.embedding.weight"].shape[0]
):
emb_shape = self.model.pos_embed.embedding.weight.shape
ckpt_emb = beit["pos_embed.embedding.weight"].clone()
assert emb_shape[1] == ckpt_emb.shape[1]
ckpt_emb = ckpt_emb.unsqueeze(0).permute(0, 2, 1)
ckpt_emb = F.interpolate(ckpt_emb, emb_shape[0], mode="nearest")
beit["pos_embed.embedding.weight"] = ckpt_emb.permute(0, 2, 1).squeeze()
out = self.model.load_state_dict(beit, strict=False)
# ensure missing keys are just token_embed, decoder, and generator
missing_keys_prefix = ("token_embed", "decoder", "generator")
for key in out[0]:
assert key.startswith(
missing_keys_prefix
), f"Key {key} should be loaded from BEiT, but missing in current state dict."
assert len(out[1]) == 0, f"Unexpected keys from BEiT: {out[1]}"
|