File size: 6,108 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from typing import Optional, Tuple
import torch
from torch import nn, Tensor
from torchvision.ops.misc import Conv2dNormActivation


__all__ = [
    "ImgCnnBackbone",
    "ImgLinearBackbone",
    "ImgConvStemBackbone",
    "PositionEmbedding",
    "Encoder",
    "Decoder",
    "TokenEmbedding",
]


class ImgCnnBackbone(nn.Module):
    def __init__(
        self,
        backbone: nn.Module,
        output_channels: int,
        d_model: int,
        drop_layer: Tuple = None,
    ) -> None:
        super().__init__()

        # drop layers for classification & maxpooling for higher feature resolution
        layers = list(backbone.children())
        nlayer = len(layers)
        keep_layer = set([i for i in range(nlayer)]) - set(drop_layer)
        backbone = [layers[i] for i in keep_layer]
        self.backbone = nn.Sequential(*backbone)
        self.proj = nn.Linear(output_channels, d_model)
        self.channels = output_channels

    def forward(self, x: Tensor) -> Tensor:
        x = self.backbone(x)
        x = x.flatten(start_dim=-2).transpose(1, 2)
        assert x.shape[-1] == self.channels, "Image channels size mismatch."
        x = self.proj(x)
        return x


class ImgLinearBackbone(nn.Module):
    def __init__(
        self,
        d_model: int,
        patch_size: int,
        in_chan: int = 3,
    ) -> None:
        super().__init__()

        self.conv_proj = nn.Conv2d(
            in_chan, out_channels=d_model, kernel_size=patch_size, stride=patch_size
        )
        self.d_model = d_model

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv_proj(x)
        x = x.flatten(start_dim=-2).transpose(1, 2)
        return x


class ImgConvStemBackbone(nn.Module):
    def __init__(
        self,
        d_model: int,
        downsample_factor: int,
        output_channels: int,
        kernel_size: int,
    ) -> None:
        super().__init__()

        assert downsample_factor % 2 == 0
        assert output_channels % (downsample_factor // 2) == 0
        input_channels = output_channels // (downsample_factor // 2)

        layers = [
            Conv2dNormActivation(
                3, input_channels, kernel_size=kernel_size, stride=2, padding=1
            )
        ]

        while input_channels != output_channels:
            layers.append(
                Conv2dNormActivation(
                    input_channels,
                    input_channels * 2,
                    kernel_size=kernel_size,
                    stride=2,
                    padding=1,
                )
            )
            input_channels = input_channels * 2

        layers.append(nn.Conv2d(output_channels, d_model, kernel_size=1))

        self.conv_stem = nn.Sequential(*layers)

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv_stem(x)
        x = x.flatten(start_dim=-2).transpose(1, 2)
        return x


class Encoder(nn.Module):
    def __init__(
        self,
        d_model: int,
        nhead: int,
        dropout: float,
        activation: str,
        norm_first: bool,
        nlayer: int,
        ff_ratio: int = 4,
    ) -> None:
        super().__init__()

        encoder_layer = nn.TransformerEncoderLayer(
            d_model,
            nhead=nhead,
            dim_feedforward=ff_ratio * d_model,
            dropout=dropout,
            activation=activation,
            batch_first=True,
            norm_first=norm_first,
        )

        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=nlayer)

    def forward(self, x: Tensor) -> Tensor:
        x = self.encoder(x)
        return x


class Decoder(nn.Module):
    def __init__(
        self,
        d_model: int,
        nhead: int,
        dropout: float,
        activation: str,
        norm_first: bool,
        nlayer: int,
        ff_ratio: int = 4,
    ) -> None:
        super().__init__()
        decoder_layer = nn.TransformerDecoderLayer(
            d_model,
            nhead,
            dim_feedforward=ff_ratio * d_model,
            dropout=dropout,
            activation=activation,
            batch_first=True,
            norm_first=norm_first,
        )

        self.decoder = nn.TransformerDecoder(decoder_layer, nlayer)

    def forward(
        self, x: Tensor, memory: Tensor, tgt_mask: Tensor, tgt_padding_mask: Tensor
    ) -> Tensor:
        x = self.decoder(
            x, memory, tgt_mask=tgt_mask, tgt_key_padding_mask=tgt_padding_mask
        )
        return x


class PositionEmbedding(nn.Module):
    def __init__(self, max_seq_len: int, d_model: int, dropout: float) -> None:
        super().__init__()
        self.embedding = nn.Embedding(max_seq_len, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x: Tensor) -> Tensor:
        # assume x is batch first
        out = self.embedding(torch.arange(x.shape[1], device=x.device))
        return self.dropout(out + x)


class TokenEmbedding(nn.Module):
    def __init__(
        self,
        vocab_size: int,
        d_model: int,
        padding_idx: int,
    ) -> None:
        super().__init__()
        assert vocab_size > 0
        self.embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx)

    def forward(self, x: Tensor) -> Tensor:
        return self.embedding(x)


class PrintLayer(nn.Module):
    """Only for debugging when loss is nan."""

    def __init__(self):
        super().__init__()

    def forward(self, x):
        print(
            "torch.isfinite(x).all(): {}, min. {:.5f}, max. {:.5f}".format(
                torch.isfinite(x).all(), x.min(), x.max()
            )
        )
        return x


if __name__ == "__main__":
    from torchvision import models

    x = torch.rand(1, 3, 392, 392)
    model = ImgConvStemBackbone(
        d_model=512, downsample_factor=16, output_channels=64, kernel_size=5
    )
    y = model(x)
    print(model)
    print(y.shape)

    model = ImgCnnBackbone(
        backbone=models.resnet34(),
        output_channels=512,
        d_model=512,
        drop_layer=(3, 8, 9),
    )

    # print(model)
    y = model(x)
    print(y.shape)