Spaces:
Sleeping
Sleeping
File size: 23,747 Bytes
dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 0ee6881 3c66cf8 01fb2fc 3c66cf8 dd1a8bd 01fb2fc 3c66cf8 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 01fb2fc dd1a8bd e8470a3 dd1a8bd 3c66cf8 dd1a8bd d8239f6 3c66cf8 dd1a8bd d8239f6 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 d8239f6 dd1a8bd d8239f6 dd1a8bd d8239f6 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 3c66cf8 01fb2fc 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 0ee6881 dd1a8bd 3c66cf8 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd 0ee6881 dd1a8bd d8239f6 3c66cf8 d8239f6 3c66cf8 d8239f6 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 3c66cf8 dd1a8bd 0ee6881 dd1a8bd d8239f6 dd1a8bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import streamlit as st
import streamlit_authenticator as stauth
from deta import Deta
import yaml
from yaml.loader import SafeLoader
import os
from langchain.llms import OpenAI
import re
from PyPDF2 import PdfReader
from streamlit_option_menu import option_menu
import streamlit_survey as ss
from cryptography.fernet import Fernet
import warnings
import openai
import json
from collections import defaultdict
warnings.filterwarnings("ignore", category=UserWarning, module='langchain')
class Validator:
def validate_username(self, username):
pattern = r"^[a-zA-Z0-9_-]{1,20}$"
return bool(re.match(pattern, username))
def validate_name(self, name):
return 1 < len(name) < 100
def validate_email(self, email):
pattern = "^[a-zA-Z0-9-_]+@[a-zA-Z0-9]+\.[a-z]{1,3}$"
if re.match(pattern, email):
return True
return False
def get_user_data(user):
data = db.fetch().items
for person in data:
if person['key'] == user:
return person
return None
def user_history(time, text, ):
pass
def update_questionnaire_response(user_response, username):
db.update({"questionnaire_response": user_response}, key=username)
st.success("Your responses have been recorded. Thank you!")
def generate_responses(text, chat_model="gpt-3.5-turbo", paper_title="", level_education="",
english_proficiency="", language_spoken="", tech_usage="",
news_read="", books_read="", additional_requirements="None"):
# Incorporating the parameters into the context
text = text[:2048]
user_context = f"""
The user has achieved an education level up tp {level_education}. In daily routine, the user describes the frequency of using
technology such as computers, cell phones, and tablets as {tech_usage}. The user's primary language spoken at home is
{language_spoken}, and has {english_proficiency} level of English proficiency. The user {news_read} reads or watches
the news and reads approximately {books_read} books in a month.
"""
# print(user_context)
# Prompt template
prompt_template = f"""
Here's the abstract of a paper (titled) {paper_title}: {text}.
Considering the user's information: {user_context}.
And user's additional requirements: {additional_requirements}.
Generate a plain language summary that summarizes the abstract. While creating this Plain Language Summary, please keep the following must-have elements in mind:
- The plain language summary should achieve readability at the 8th Grade level as measured by the Flesch Kincaid scale.
- The plain language summary should achieve Flesh Reading Ease Scores from 60 to 70.
- Ensure each sentence is shorter than 25 words.
- The summary should average 6 sentences per paragraph.
- Less than 10% of the sentences should be in passive voice.
- Ensure fidelity to the original source.
- Use clear and simple language, avoiding jargon.
- Maintain ethical considerations, including objectivity and inclusivity.
- Aim for universal readability, targeting a reading age of 14-17 years.
- Consider multi-language accessibility.
- Take into account any operational context or guidelines that may apply.
- The plain language summary should be a single paragraph, without subtitles or bullet points.
"""
conversation = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': prompt_template}
]
try:
response = openai.ChatCompletion.create(
model=chat_model,
messages=conversation
)
return response['choices'][0]['message']['content']
except:
st.error('Invalid api key.', icon="⚠️")
@st.cache_resource
def survey(user_name):
title = user_name + '_survey'
return ss.StreamlitSurvey(title)
# connect to/create Deta user database
db_key = st.secrets["deta_key"]
deta = Deta(db_key)
db = deta.Base("user_data")
key = Fernet(st.secrets['fernet_key'])
config_drive = deta.Drive("config")
config = config_drive.get("config.yaml").read()
config = yaml.load(config, Loader=SafeLoader)
# Create an authenticator
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
authenticator.validator = Validator()
init_sidebar = st.sidebar.empty()
with init_sidebar:
init_page = option_menu(None,
["Login", 'Sign Up'],
icons=['lightbulb-fill', 'lightbulb'],
menu_icon="cast",
default_index=0,
styles={})
if init_page == 'Login':
name, authentication_status, username = authenticator.login('Login', 'main')
if authentication_status:
init_sidebar.empty()
st.sidebar.write(f'**Welcome** {name}')
app_sidebar = st.sidebar.empty()
if 'current_page_name' not in st.session_state:
st.session_state.current_page_name = "Generate Plain Language Summary" # 设置默认页面
with app_sidebar:
page = option_menu(None, ["Generate Plain Language Summary", 'Questionnaire', 'Setup'],
icons=['house', 'question-circle', 'gear'],
menu_icon="None",
default_index=0,
styles={})
authenticator.logout('Logout', 'sidebar', key='unique_key')
# Fetch user data from the database
user_data = get_user_data(username)
# print('current page: ', page)
if page == "Generate Plain Language Summary":
st.title("Generate Plain Language Summary")
st.markdown(
'''
### What is a Plain Language Summary?
A Plain Language Summary is a clear and concise summary of a scientific paper. It's designed to make complex research findings more accessible and understandable to a general audience.
#### Detailed Instructions for Generating a Plain Language Summary
1. **Set Up**: Navigate to the 'Set Up' page to input your API key and specify your writing style. This will help tailor the summary to your preferences.
2. **Complete the Questionnaire**: On the 'Questionnaire' page, you'll also find a questionnaire designed to further tailor the summary to your needs. Please complete it.
3. **Choose Content Source**:
- **Option A**: If you have access to the full paper, you can upload the whole document.
- **Option B**: Alternatively, you can input the abstract of the paper.
4. **Input Paper Title**: Paste the exact title of the paper you wish to summarize in the text input field below. An accurate title ensures a more relevant summary.
5. **Generate Summary**: After completing the above steps, click on the 'Generate' button to receive your Plain Language Summary.
'''
)
# Title input box
title_text = st.text_area("Paste Your Paper Title Here", height=25)
# Abstract input box
abstract_text = st.text_area("Paste Abstract Here", height=200)
# background_info = st.text_area("Background information on original post (references, relevant information, best practices for responding)", height=200)
# PDF input box and text extraction
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
chat_mdl = None
draft_response = ''
entire_text = ""
if uploaded_file is not None:
reader = PdfReader(uploaded_file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
page_text = page.extract_text()
entire_text += page_text
if user_data:
st.session_state.api_key = key.decrypt(user_data['api'].encode()).decode()
else:
st.session_state.api_key = ''
if 'draft_response_content' not in st.session_state:
st.session_state.draft_response_content = ""
draft_response = ''
user_response = user_data['questionnaire_response'] if user_data else defaultdict(lambda: '')
submit_text = ''
if entire_text:
submit_text = entire_text
else:
submit_text = abstract_text
# Check if the "Submit" button is clicked
# st.write("#### What is your familiarity with the concepts of the paper?")
# st.markdown('''
# * No Familiarity: entirely unfamiliar, no prior knowledge
# * Limited Familiarity: basic awareness of the concepts in the paper, but not in-depth knowledge
# * Moderate Familiarity: reasonable understanding of the concepts in the paper, encountered before, or some background knowledge
# * Good Familiarity: a solid understanding due to prior exposure or study
# * Expert: highly knowledgeable and experienced in the field and has worked extensively with these concepts
# ''')
# paper_familiarity = st.select_slider(
# label="paper_familiarity",
# options=['No Familiarity', 'Limited Familiarity', 'Moderate Familiarity',
# 'Good Familiarity', 'Expert Familiarity'],
# label_visibility="collapsed",
# )
#
# if 'paper_familiarity' not in st.session_state:
# st.session_state['paper_familiarity'] = ''
# st.session_state['paper_familiarity'] = paper_familiarity
if st.button("Submit"):
if abstract_text == '' and uploaded_file == None:
st.warning('Please paste Abstract or upload a file.', icon="⚠️")
if st.session_state.api_key:
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
chat_mdl = OpenAI(model_name='gpt-4', temperature=0.1)
else:
st.warning('Please fill in api-key in Setup.', icon="⚠️")
if chat_mdl is not None and submit_text:
st.session_state.draft_response_content = generate_responses(
text=submit_text,
paper_title=title_text,
level_education=user_response[
'level_education'],
english_proficiency=user_response[
'english_proficiency'],
language_spoken=user_response[
'language_spoken'],
tech_usage=user_response[
'tech_usage'],
news_read=user_response[
'news_read'],
books_read=user_response[
'books_read'],
)
container = st.empty()
# Output from function
container.text_area(label="Plain Language Summary", value=st.session_state.draft_response_content,
height=350)
regenerate_prompt = st.text_area("Additional prompting for regenerating summary", height=100)
if st.button('Regenerate'):
if st.session_state.draft_response_content == "":
st.warning('Please Generate a PLS first', icon="⚠️")
elif regenerate_prompt == "":
st.warning('Your new prompt is empty', icon="⚠️")
else:
additional_prompt = regenerate_prompt
st.session_state.draft_response_content = generate_responses(
text=submit_text,
paper_title=title_text,
level_education=user_response[
'level_education'],
english_proficiency=user_response[
'english_proficiency'],
language_spoken=user_response[
'language_spoken'],
tech_usage=user_response[
'tech_usage'],
news_read=user_response[
'news_read'],
books_read=user_response[
'books_read'],
additional_requirements=additional_prompt,
)
container.empty()
container.text_area(label="Plain Language Summary", value=st.session_state.draft_response_content,
height=350)
# some function to re-submit prompt and generate new PLS
# elif page == "History":
# st.write('User prompt History TODO')
elif page == "Setup":
st.title("Setup")
# Input boxes with existing data
if 'api_key' not in st.session_state:
st.session_state.api_key = ""
api_input = st.text_input("OpenAI API Token", value=st.session_state.api_key, type='password')
st.session_state.api_key = api_input
questionnaire_response = user_data['questionnaire_response'] if user_data else {}
# Update button
if st.button("Update"):
db.put(
{"key": username, "api": key.encrypt(bytes(api_input, 'utf-8')).decode(),
"questionnaire_response": questionnaire_response})
st.success('Updating successfully!')
elif page == "Questionnaire":
survey = survey(username)
if 'questionnaire_response' not in st.session_state:
st.session_state['questionnaire_response'] = {}
# print(st.session_state['questionnaire_response'])
page_number = 11
survey_pages = survey.pages(page_number,
on_submit=lambda: update_questionnaire_response(
st.session_state['questionnaire_response'], username))
# st.session_state["__streamlit-survey-data__Pages_"] = survey_pages.current
st.progress((survey_pages.current + 1) / page_number)
with survey_pages:
if survey_pages.current == 0:
st.write("#### What is your level of education? (for research purposes)")
level_education = survey.radio(
label="level_education",
options=["Primary School", "Middle School", "Secondary School",
"College", "Masters", "PhD"],
index=0,
label_visibility="collapsed",
horizontal=False,
)
st.session_state['questionnaire_response']['level_education'] = level_education
elif survey_pages.current == 1:
st.write("#### What domains are you most interested in?")
domains = ['Global Studies', 'Arts', 'Business & Economics', 'History', 'Humanities',
'Law', 'Medicine and Health', 'Science - Biology', 'Science - Chemistry',
'Science - Environmental Science', 'Science - Physics', 'Mathematics',
'Engineering', 'Social Sciences']
domains_interested = {}
for i in range(len(domains)):
domains_interested[domains[i]] = survey.checkbox(domains[i])
interested_domain = []
for domain in domains_interested:
if domains_interested[domain]:
interested_domain.append(domain)
st.session_state['questionnaire_response']['interested_domain'] = interested_domain
elif survey_pages.current == 2:
paper_discovery_method = survey.text_area("#### How did you come across this paper?")
st.session_state['questionnaire_response']['paper_discovery_method'] = paper_discovery_method
elif survey_pages.current == 3:
reading_purpose = survey.text_area("#### For what purpose are you reading this paper?")
st.session_state['questionnaire_response']['reading_purpose'] = reading_purpose
elif survey_pages.current == 4:
st.write("#### What information do you want to get out of this paper?")
information_options = ["Main findings and conclusions",
'Methodology and experimental design',
'Data and statistical analysis',
'Limitations or gaps in the research']
info_interested = {}
for i in range(len(information_options)):
info_interested[information_options[i]] = survey.checkbox(information_options[i])
desired_information = []
for info in info_interested:
if info_interested[info]:
desired_information.append(info)
other_info = survey.text_input('Other aspects:')
if other_info:
desired_information.append(other_info)
st.session_state['questionnaire_response']['desired_information'] = desired_information
elif survey_pages.current == 5:
st.write("#### what is your level of english proficiency?")
english_proficiency = st.slider("English Proficiency (1-5):", min_value=1, max_value=5, value=1)
st.session_state['questionnaire_response']['english_proficiency'] = english_proficiency
elif survey_pages.current == 6:
st.write("#### What is the primary language spoken in your home? (click from the list and others)")
languages = ['English', 'Spanish', ]
language_options = {}
for i in range(len(languages)):
language_options[languages[i]] = survey.checkbox(languages[i])
language_spoken = []
for language in language_options:
if language_options[language]:
language_spoken.append(language)
other_language = survey.text_input('Other')
if other_language:
language_spoken.append(other_language)
st.session_state['questionnaire_response']['language_spoken'] = language_spoken
elif survey_pages.current == 7:
st.write("#### Do you speak other languages? How fluent are you in each language?")
language_fluency = {}
language_index = 1
col1, col2 = st.columns([3, 2])
with col1:
other_language = survey.text_input(f'Language {"#" + str(language_index)}')
with col2:
fluency = survey.selectbox(f'Fluency {"#" + str(language_index)}',
options=["", "Beginner", "Intermediate", "Advanced", "Native"],
)
if other_language and fluency:
language_fluency.update({other_language: fluency})
while other_language:
language_index += 1
with col1:
other_language = survey.text_input(f'Language {"#" + str(language_index)}')
with col2:
fluency = survey.selectbox(f'Fluency {"#" + str(language_index)}',
options=["", "Beginner", "Intermediate", "Advanced", "Native"],
)
if other_language and fluency:
language_fluency.update({other_language: fluency})
st.session_state['questionnaire_response']['other_language'] = language_fluency
elif survey_pages.current == 8:
st.write(
"#### How much do you use technology (computers, cell phones, tablets, GPS, internet, etc.)?")
st.markdown('''
* Always: relies heavily on daily tasks
* Often in a day: not necessarily every task, but plays a significant role in life
* Occasionally: use constantly but not essential for most daily activities
* Rarely: use only for specific tasks
* Never: avoid using technology
''')
tech_usage = survey.select_slider(
label="tech_usage",
options=['Never', 'Rarely', 'Occasionally',
'Often', 'Always'],
# min_value=1,
# max_value=5,
label_visibility="collapsed",
)
st.session_state['questionnaire_response']['tech_usage'] = tech_usage
elif survey_pages.current == 9:
st.write("#### How often do you read or watch/listen to the news?")
news_read = survey.radio(
label="news_read",
options=["Never", "Once or Twice a Month", "Once a Week",
"Once in 2-3 Days", "Every Day"],
index=0,
label_visibility="collapsed",
horizontal=False,
)
st.session_state['questionnaire_response']['news_read'] = news_read
elif survey_pages.current == 10:
st.write("#### How many books do you read or listen to a month?")
books_read = survey.radio(
label="books_read",
options=["0", "1-3", "4-6", "7+"],
index=0,
label_visibility="collapsed",
horizontal=True,
)
st.session_state['questionnaire_response']['books_read'] = books_read
elif authentication_status is False:
st.error('Username or Password is incorrect', icon="⚠️")
elif init_page == 'Sign Up':
try:
if authenticator.register_user('Register user', preauthorization=False):
st.success('User registered successfully')
st.balloons()
except Exception as e:
st.error(e)
with open('config.yaml', 'w') as file:
yaml.dump(config, file, default_flow_style=False)
config_drive.put("config.yaml", path="config.yaml")
|