File size: 8,728 Bytes
a059c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
from torchvision.ops.boxes import batched_nms

from util.box_ops import box_cxcywh_to_xyxy

from .deformable_detr.deformable_transformer import DeformableTransformer


class OVTransformer(DeformableTransformer):
    def __init__(self, d_model=256, nhead=8,
                 num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
                 activation="relu", return_intermediate_dec=False,
                 num_feature_levels=4, dec_n_points=4, enc_n_points=4,
                 two_stage=False, two_stage_num_proposals=300,
                 assign_first_stage=False):
        super().__init__(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout,
                         activation, return_intermediate_dec, num_feature_levels, dec_n_points, enc_n_points,
                         two_stage, two_stage_num_proposals, assign_first_stage)

    def forward(self, srcs, masks, pos_embeds, query_embed=None, llm_feat=None, num_patch=1):
        assert self.two_stage or query_embed is not None

        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            src = src.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

        # encoder
        memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios,
                              lvl_pos_embed_flatten, mask_flatten)

        # prepare input for decoder
        bs, _, c = memory.shape
        if self.two_stage:
            output_memory, output_proposals, level_ids = \
                self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)

            # hack implementation for two-stage Deformable DETR
            enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
            enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals

            topk = self.two_stage_num_proposals
            proposal_logit = enc_outputs_class[..., 0]

            if self.assign_first_stage:
                proposal_boxes = box_cxcywh_to_xyxy(enc_outputs_coord_unact.sigmoid().float()).clamp(0, 1)
                topk_proposals = []
                for b in range(bs):
                    prop_boxes_b = proposal_boxes[b]
                    prop_logits_b = proposal_logit[b]

                    # pre-nms per-level topk
                    pre_nms_topk = 1000
                    pre_nms_inds = []
                    for lvl in range(len(spatial_shapes)):
                        lvl_mask = level_ids == lvl
                        pre_nms_inds.append(torch.topk(prop_logits_b.sigmoid() * lvl_mask, pre_nms_topk)[1])
                    pre_nms_inds = torch.cat(pre_nms_inds)

                    # nms on topk indices
                    post_nms_inds = batched_nms(prop_boxes_b[pre_nms_inds],
                                                prop_logits_b[pre_nms_inds],
                                                level_ids[pre_nms_inds], 0.9)
                    keep_inds = pre_nms_inds[post_nms_inds]

                    if len(keep_inds) < self.two_stage_num_proposals:
                        print(f'[WARNING] nms proposals ({len(keep_inds)}) < {self.two_stage_num_proposals}')
                        keep_inds = torch.topk(proposal_logit[b], topk)[1]

                    # keep top Q/L indices for L levels
                    q_per_l = topk // len(spatial_shapes)
                    level_shapes = torch.arange(len(spatial_shapes), device=level_ids.device)[:, None]
                    is_level_ordered = level_ids[keep_inds][None] == level_shapes
                    keep_inds_mask = is_level_ordered & (is_level_ordered.cumsum(1) <= q_per_l)  # LS
                    keep_inds_mask = keep_inds_mask.any(0)  # S

                    # pad to Q indices (might let ones filtered from pre-nms sneak by...
                    # unlikely because we pick high conf anyways)
                    if keep_inds_mask.sum() < topk:
                        num_to_add = topk - keep_inds_mask.sum()
                        pad_inds = (~keep_inds_mask).nonzero()[:num_to_add]
                        keep_inds_mask[pad_inds] = True

                    # index
                    keep_inds_topk = keep_inds[keep_inds_mask]
                    topk_proposals.append(keep_inds_topk)
                topk_proposals = torch.stack(topk_proposals)
            else:
                topk_proposals = torch.topk(proposal_logit, topk, dim=1)[1]

            topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_embed, tgt = torch.split(pos_trans_out, c, dim=2)

            num_queries = query_embed.shape[1]
            query_embed = query_embed.repeat(1, num_patch, 1)
            tgt = tgt.repeat(1, num_patch, 1)
            topk_feats = torch.stack([output_memory[b][topk_proposals[b]] for b in range(bs)]).detach()
            topk_feats = topk_feats.repeat(1, num_patch, 1)
            tgt = tgt + self.pix_trans_norm(self.pix_trans(topk_feats))
            reference_points = reference_points.repeat(1, num_patch, 1)
            init_reference_out = init_reference_out.repeat(1, num_patch, 1)

            llm_feat = llm_feat.repeat_interleave(num_queries, 1)
            tgt = tgt + llm_feat
        else:
            raise NotImplementedError
            query_embed, tgt = torch.split(query_embed, c, dim=1)
            query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)
            tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
            reference_points = self.reference_points(query_embed).sigmoid()
            init_reference_out = reference_points
        # decoder mask
        decoder_mask = (
            torch.ones(
                num_queries * num_patch,
                num_queries * num_patch,
                device=query_embed.device,
            ) * float("-inf")
        )
        for i in range(num_patch):
            decoder_mask[
                i * num_queries : (i + 1) * num_queries,
                i * num_queries : (i + 1) * num_queries,
            ] = 0

        # decoder
        hs, inter_references = self.decoder(tgt, reference_points, memory,
                                            spatial_shapes, level_start_index, valid_ratios,
                                            query_embed, mask_flatten, tgt_mask=decoder_mask)

        inter_references_out = inter_references
        if self.two_stage:
            return (hs,
                    init_reference_out,
                    inter_references_out,
                    enc_outputs_class,
                    enc_outputs_coord_unact,
                    output_proposals.sigmoid())
        return hs, init_reference_out, inter_references_out, None, None, None


def build_ov_transformer(args):
    return OVTransformer(
        d_model=args.hidden_dim,
        nhead=args.nheads,
        num_encoder_layers=args.enc_layers,
        num_decoder_layers=args.dec_layers,
        dim_feedforward=args.dim_feedforward,
        dropout=args.dropout,
        activation="relu",
        return_intermediate_dec=True,
        num_feature_levels=args.num_feature_levels,
        dec_n_points=args.dec_n_points,
        enc_n_points=args.enc_n_points,
        two_stage=args.two_stage,
        two_stage_num_proposals=args.num_queries,
        assign_first_stage=args.assign_first_stage)