File size: 10,712 Bytes
a059c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import math
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

from util.misc import (NestedTensor, inverse_sigmoid,
                       nested_tensor_from_tensor_list)

from .blip2_decoder import BLIP2Decoder
from .deformable_detr.backbone import build_backbone
from .deformable_detr.deformable_detr import DeformableDETR
from .transformer import build_ov_transformer


class ContextDET(DeformableDETR):
    def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels,
                 aux_loss=True, with_box_refine=False, two_stage=False, llm_decoder=None):
        super().__init__(backbone, transformer, num_classes, num_queries, num_feature_levels,
                         aux_loss, with_box_refine, two_stage)
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.llm_decoder = llm_decoder
        hidden_dim = transformer.d_model
        out_size = self.llm_decoder.model.opt_proj.out_features
        self.llm_proj = nn.Linear(out_size, hidden_dim, device=self.device)
        self.start_end_proj = nn.Linear(hidden_dim, 2)
        for layer in [self.llm_proj, self.start_end_proj]:
            nn.init.kaiming_normal_(layer.weight, mode='fan_in', nonlinearity='relu')
            nn.init.zeros_(layer.bias)
        # word_embed_proj_dim = llm_decoder.model.opt_model.config.word_embed_proj_dim
        vocab_size = llm_decoder.model.opt_model.config.vocab_size
        self.fc_logits = nn.Linear(hidden_dim, vocab_size)

    def forward(self, samples, blip2_samples, mask_infos=None, task_button=None, threshold=0.3):
        logits, hidden_states, input_ids, output_text = self.llm_decoder.model.forward(
            blip2_samples, task_button=task_button)
        hidden_states = hidden_states.detach()
        hidden_states = self.llm_proj(hidden_states)

        if not isinstance(samples, NestedTensor):
            samples = nested_tensor_from_tensor_list(samples)
        features, pos = self.backbone(samples)

        srcs = []
        masks = []
        for l, feat in enumerate(features):
            src, mask = feat.decompose()
            srcs.append(self.input_proj[l](src))
            masks.append(mask)
            assert mask is not None
        if self.num_feature_levels > len(srcs):
            _len_srcs = len(srcs)
            for l in range(_len_srcs, self.num_feature_levels):
                if l == _len_srcs:
                    src = self.input_proj[l](features[-1].tensors)
                else:
                    src = self.input_proj[l](srcs[-1])
                m = samples.mask
                mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
                pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
                srcs.append(src)
                masks.append(mask)
                pos.append(pos_l)

        out = {}
        start_end_proj = self.start_end_proj(hidden_states)
        out['pred_mlm_logits'] = self.fc_logits(hidden_states)
        out['pred_start'] = start_end_proj[:, :, 0:1]
        out['pred_end'] = start_end_proj[:, :, 1:2]
        out['output_text'] = output_text
        if self.training:
            k = min([len(mask_info) for mask_info in mask_infos])
            k = min(k, 2)
            select_ids = [random.sample(mask_info.keys(), k) for mask_info in mask_infos]
            # select_ids = [random.choices(list(mask_info.keys()), k=4) for mask_info in mask_infos]
            llm_feat = []
            for b in range(len(select_ids)):
                llm_feat_b = []
                hidden_states_b = hidden_states[b, :, :]
                for start, end in select_ids[b]:
                    llm_feat_b.append(hidden_states_b[start: end + 1].mean(dim=0, keepdim=True))
                llm_feat.append(torch.cat(llm_feat_b)[None])
            llm_feat = torch.cat(llm_feat)
            query_embeds = None
            if not self.two_stage:
                query_embeds = self.query_embed.weight
            hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = (
                self.transformer(srcs, masks, pos, query_embeds, llm_feat, k)
            )
            outputs_classes = []
            outputs_coords = []
            for lvl in range(hs.shape[0]):
                if lvl == 0:
                    reference = init_reference
                else:
                    reference = inter_references[lvl - 1]
                reference = inverse_sigmoid(reference)
                outputs_class = self.class_embed[lvl](hs[lvl])
                tmp = self.bbox_embed[lvl](hs[lvl])
                if reference.shape[-1] == 4:
                    tmp += reference
                else:
                    assert reference.shape[-1] == 2
                    tmp[..., :2] += reference
                outputs_coord = tmp.sigmoid()
                outputs_classes.append(outputs_class)
                outputs_coords.append(outputs_coord)
            outputs_class = torch.stack(outputs_classes)
            outputs_coord = torch.stack(outputs_coords)

            out.update({'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1],
                        'init_reference': init_reference})
            out['select_ids'] = select_ids

            if self.aux_loss:
                out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
                for temp in out["aux_outputs"]:
                    temp["select_ids"] = select_ids

            if self.two_stage:
                enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
                out['enc_outputs'] = {
                    'pred_logits': enc_outputs_class,
                    'pred_boxes': enc_outputs_coord,
                    'anchors': anchors,
                }
        else:
            bs = len(samples.tensors)
            mask_infos_pred = [{} for _ in range(bs)]
            llm_feat = []
            tokenizer = self.llm_decoder.model.opt_tokenizer
            if mask_infos is None:
                if task_button == 'Cloze Test':
                    mask_infos = []
                    output_texts = []
                    for b in range(bs):
                        mask_infos_b = {}
                        output_texts_b = []
                        for ind, token in enumerate(input_ids[b]):
                            if token == tokenizer.mask_token_id:
                                mask_infos_b[(ind, ind)] = ''
                                pred_token = out['pred_mlm_logits'][b, ind:ind + 1, :]
                                pred_token = pred_token.argmax(1).item()
                                output_texts_b.append( pred_token )
                                output_texts_b.append( 1437 )
                                input_ids[b, ind: ind + 1] = pred_token
                            else:
                                output_texts_b.append( token.item() )
                        mask_infos.append(mask_infos_b)
                        output_texts.append(tokenizer.decode(output_texts_b[1:]))
                    out['output_text'] = output_texts
                else:
                    mask_infos = []
                    for b in range(bs):
                        starts = (out['pred_start'][b, :, 0].sigmoid() > threshold).nonzero().squeeze(1)
                        ends = (out['pred_end'][b, :, 0].sigmoid() > threshold).nonzero().squeeze(1)
                        if len(starts) == 0:
                            starts = out['pred_start'][b, :].argmax(0)
                        if len(ends) == 0:
                            ends = out['pred_end'][b, :].argmax(0)
                        mask_infos_b = {}
                        for start, end in zip(starts, ends):
                            mask_infos_b[(int(start), int(end))] = ''
                        mask_infos.append(mask_infos_b)
            for b in range(bs):
                llm_feat_b = []
                hidden_states_b = hidden_states[b, :, :]
                for start, end in mask_infos[b].keys():
                    llm_feat_b.append(hidden_states_b[start: end + 1].mean(dim=0, keepdim=True))
                    pred_name = tokenizer.decode(input_ids[b, start: end + 1]).strip()
                    mask_infos_pred[b][(int(start), int(end))] = pred_name
                llm_feat.append(torch.cat(llm_feat_b)[None])
            out['mask_infos_pred'] = mask_infos_pred

            query_embeds = None
            if not self.two_stage:
                query_embeds = self.query_embed.weight

            outputs_classes_list = []
            outputs_coords_list = []
            for b in range(bs):
                srcs_b = [i[b: b + 1] for i in srcs]
                masks_b = [i[b: b + 1] for i in masks]
                pos_b = [i[b: b + 1] for i in pos]
                k = len(mask_infos[b])
                if k == 0:
                    outputs_classes_list.append(torch.zeros(0, 2).to(self.device))
                    outputs_coords_list.append(torch.zeros(0, 4).to(self.device))
                    continue
                num_repeat = math.ceil(k / 4)
                outputs_classes = []
                outputs_coords = []
                for ind in range(num_repeat):
                    llm_feat_b = llm_feat[b][:, ind * 4: (ind + 1) * 4]
                    hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, anchors = (
                        self.transformer(srcs_b, masks_b, pos_b, query_embeds, llm_feat_b, llm_feat_b.shape[1])
                    )
                    lvl = hs.shape[0] - 1
                    reference = inter_references[lvl - 1]
                    reference = inverse_sigmoid(reference)
                    outputs_class = self.class_embed[lvl](hs[lvl])
                    tmp = self.bbox_embed[lvl](hs[lvl])
                    if reference.shape[-1] == 4:
                        tmp += reference
                    else:
                        assert reference.shape[-1] == 2
                        tmp[..., :2] += reference
                    outputs_coord = tmp.sigmoid()
                    outputs_classes.append(outputs_class.flatten(0, 1))
                    outputs_coords.append(outputs_coord.flatten(0, 1))
                outputs_classes = torch.cat(outputs_classes)[None]
                outputs_coords = torch.cat(outputs_coords)[None]
                outputs_classes_list.append(outputs_classes)
                outputs_coords_list.append(outputs_coords)

            out.update({'pred_logits': outputs_classes_list,
                        'pred_boxes': outputs_coords_list})
        return out