Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import requests
|
6 |
+
import timm
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as T
|
9 |
+
import types
|
10 |
+
import albumentations as A
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from tqdm import tqdm
|
14 |
+
from sklearn.decomposition import PCA
|
15 |
+
from torch_kmeans import KMeans, CosineSimilarity
|
16 |
+
|
17 |
+
cmap = plt.get_cmap("tab20")
|
18 |
+
MEAN = np.array([123.675, 116.280, 103.530]) / 255
|
19 |
+
STD = np.array([58.395, 57.120, 57.375]) / 255
|
20 |
+
|
21 |
+
transforms = A.Compose([
|
22 |
+
A.Normalize(mean=list(MEAN), std=list(STD)),
|
23 |
+
])
|
24 |
+
|
25 |
+
def get_intermediate_layers(
|
26 |
+
self,
|
27 |
+
x: torch.Tensor,
|
28 |
+
n=1,
|
29 |
+
reshape: bool = False,
|
30 |
+
return_prefix_tokens: bool = False,
|
31 |
+
return_class_token: bool = False,
|
32 |
+
norm: bool = True,
|
33 |
+
):
|
34 |
+
outputs = self._intermediate_layers(x, n)
|
35 |
+
if norm:
|
36 |
+
outputs = [self.norm(out) for out in outputs]
|
37 |
+
if return_class_token:
|
38 |
+
prefix_tokens = [out[:, 0] for out in outputs]
|
39 |
+
else:
|
40 |
+
prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
|
41 |
+
outputs = [out[:, self.num_prefix_tokens :] for out in outputs]
|
42 |
+
|
43 |
+
if reshape:
|
44 |
+
B, C, H, W = x.shape
|
45 |
+
grid_size = (
|
46 |
+
(H - self.patch_embed.patch_size[0])
|
47 |
+
// self.patch_embed.proj.stride[0]
|
48 |
+
+ 1,
|
49 |
+
(W - self.patch_embed.patch_size[1])
|
50 |
+
// self.patch_embed.proj.stride[1]
|
51 |
+
+ 1,
|
52 |
+
)
|
53 |
+
outputs = [
|
54 |
+
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
|
55 |
+
.permute(0, 3, 1, 2)
|
56 |
+
.contiguous()
|
57 |
+
for out in outputs
|
58 |
+
]
|
59 |
+
|
60 |
+
if return_prefix_tokens or return_class_token:
|
61 |
+
return tuple(zip(outputs, prefix_tokens))
|
62 |
+
return tuple(outputs)
|
63 |
+
|
64 |
+
def viz_feat(feat):
|
65 |
+
|
66 |
+
_,_,h,w = feat.shape
|
67 |
+
feat = feat.squeeze(0).permute((1,2,0))
|
68 |
+
projected_featmap = feat.reshape(-1, feat.shape[-1]).cpu()
|
69 |
+
|
70 |
+
pca = PCA(n_components=3)
|
71 |
+
pca.fit(projected_featmap)
|
72 |
+
pca_features = pca.transform(projected_featmap)
|
73 |
+
pca_features = (pca_features - pca_features.min()) / (pca_features.max() - pca_features.min())
|
74 |
+
pca_features = pca_features * 255
|
75 |
+
res_pred = Image.fromarray(pca_features.reshape(h, w, 3).astype(np.uint8))
|
76 |
+
|
77 |
+
return res_pred
|
78 |
+
|
79 |
+
def plot_feats(model_option, ori_feats, fine_feats, ori_labels=None, fine_labels=None):
|
80 |
+
|
81 |
+
ori_feats_map = viz_feat(ori_feats)
|
82 |
+
fine_feats_map = viz_feat(fine_feats)
|
83 |
+
|
84 |
+
fig, ax = plt.subplots(2, 2, figsize=(6, 5))
|
85 |
+
ax[0][0].imshow(ori_feats_map)
|
86 |
+
ax[0][0].set_title("Original " + model_option, fontsize=15)
|
87 |
+
ax[0][1].imshow(fine_feats_map)
|
88 |
+
ax[0][1].set_title("Ours", fontsize=15)
|
89 |
+
ax[1][0].imshow(ori_labels)
|
90 |
+
ax[1][1].imshow(fine_labels)
|
91 |
+
for xx in ax:
|
92 |
+
for x in xx:
|
93 |
+
x.xaxis.set_major_formatter(plt.NullFormatter())
|
94 |
+
x.yaxis.set_major_formatter(plt.NullFormatter())
|
95 |
+
x.set_xticks([])
|
96 |
+
x.set_yticks([])
|
97 |
+
x.axis('off')
|
98 |
+
|
99 |
+
plt.tight_layout()
|
100 |
+
plt.close(fig)
|
101 |
+
return fig
|
102 |
+
|
103 |
+
|
104 |
+
def download_image(url, save_path):
|
105 |
+
response = requests.get(url)
|
106 |
+
with open(save_path, 'wb') as file:
|
107 |
+
file.write(response.content)
|
108 |
+
|
109 |
+
|
110 |
+
def process_image(image, stride, transforms):
|
111 |
+
transformed = transforms(image=np.array(image))
|
112 |
+
image_tensor = torch.tensor(transformed['image'])
|
113 |
+
image_tensor = image_tensor.permute(2,0,1)
|
114 |
+
image_tensor = image_tensor.unsqueeze(0).to(device)
|
115 |
+
|
116 |
+
h, w = image_tensor.shape[2:]
|
117 |
+
|
118 |
+
height_int = (h // stride)*stride
|
119 |
+
width_int = (w // stride)*stride
|
120 |
+
|
121 |
+
image_resized = torch.nn.functional.interpolate(image_tensor, size=(height_int, width_int), mode='bilinear')
|
122 |
+
|
123 |
+
return image_resized
|
124 |
+
|
125 |
+
|
126 |
+
def kmeans_clustering(feats_map, n_clusters=20):
|
127 |
+
if n_clusters == None:
|
128 |
+
n_clusters = 20
|
129 |
+
print('num clusters: ', n_clusters)
|
130 |
+
B, D, h, w = feats_map.shape
|
131 |
+
feats_map_flattened = feats_map.permute((0, 2, 3, 1)).reshape(B, -1, D)
|
132 |
+
|
133 |
+
kmeans_engine = KMeans(n_clusters=n_clusters, distance=CosineSimilarity)
|
134 |
+
kmeans_engine.fit(feats_map_flattened)
|
135 |
+
labels = kmeans_engine.predict(
|
136 |
+
feats_map_flattened
|
137 |
+
)
|
138 |
+
labels = labels.reshape(
|
139 |
+
B, h, w
|
140 |
+
).float()
|
141 |
+
labels = labels[0].cpu().numpy()
|
142 |
+
|
143 |
+
label_map = cmap(labels / n_clusters)[..., :3]
|
144 |
+
label_map = np.uint8(label_map * 255)
|
145 |
+
label_map = Image.fromarray(label_map)
|
146 |
+
|
147 |
+
return label_map
|
148 |
+
|
149 |
+
def load_model(options):
|
150 |
+
original_models = {}
|
151 |
+
fine_models = {}
|
152 |
+
for option in tqdm(options):
|
153 |
+
print('Please wait ...')
|
154 |
+
print('loading weights of ', option)
|
155 |
+
original_models[option] = timm.create_model(
|
156 |
+
timm_model_card[option],
|
157 |
+
pretrained=True,
|
158 |
+
num_classes=0,
|
159 |
+
dynamic_img_size=True,
|
160 |
+
dynamic_img_pad=False,
|
161 |
+
).to(device)
|
162 |
+
original_models[option].get_intermediate_layers = types.MethodType(
|
163 |
+
get_intermediate_layers,
|
164 |
+
original_models[option]
|
165 |
+
)
|
166 |
+
|
167 |
+
fine_models[option] = torch.hub.load("ywyue/FiT3D", our_model_card[option]).to(device)
|
168 |
+
fine_models[option].get_intermediate_layers = types.MethodType(
|
169 |
+
get_intermediate_layers,
|
170 |
+
fine_models[option]
|
171 |
+
)
|
172 |
+
print('Done! Now play the demo :)')
|
173 |
+
return original_models, fine_models
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
|
177 |
+
if torch.cuda.is_available():
|
178 |
+
device = torch.device('cuda')
|
179 |
+
else:
|
180 |
+
device = torch.device('cpu')
|
181 |
+
|
182 |
+
print("device: ")
|
183 |
+
print(device)
|
184 |
+
|
185 |
+
example_urls = {
|
186 |
+
"library.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/library.jpg",
|
187 |
+
"livingroom.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/livingroom.jpg",
|
188 |
+
"airplane.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/airplane.jpg",
|
189 |
+
"ship.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/ship.jpg",
|
190 |
+
"chair.jpg": "https://n.ethz.ch/~yuayue/assets/fit3d/demo_images/chair.jpg",
|
191 |
+
}
|
192 |
+
|
193 |
+
example_dir = "/tmp/examples"
|
194 |
+
|
195 |
+
os.makedirs(example_dir, exist_ok=True)
|
196 |
+
|
197 |
+
|
198 |
+
for name, url in example_urls.items():
|
199 |
+
save_path = os.path.join(example_dir, name)
|
200 |
+
if not os.path.exists(save_path):
|
201 |
+
print(f"Downloading to {save_path}...")
|
202 |
+
download_image(url, save_path)
|
203 |
+
else:
|
204 |
+
print(f"{save_path} already exists.")
|
205 |
+
|
206 |
+
image_input = gr.Image(label="Choose an image:",
|
207 |
+
height=500,
|
208 |
+
type="pil",
|
209 |
+
image_mode='RGB',
|
210 |
+
sources=['upload', 'webcam', 'clipboard']
|
211 |
+
)
|
212 |
+
|
213 |
+
options = ['DINOv2', 'DINOv2-reg', 'CLIP', 'MAE', 'DeiT-III']
|
214 |
+
model_option = gr.Radio(options, value="DINOv2", label='Choose a 2D foundation model')
|
215 |
+
kmeans_num = gr.Number(
|
216 |
+
label="number of K-Means clusters", value=20
|
217 |
+
)
|
218 |
+
|
219 |
+
timm_model_card = {
|
220 |
+
"DINOv2": "vit_small_patch14_dinov2.lvd142m",
|
221 |
+
"DINOv2-reg": "vit_small_patch14_reg4_dinov2.lvd142m",
|
222 |
+
"CLIP": "vit_base_patch16_clip_384.laion2b_ft_in12k_in1k",
|
223 |
+
"MAE": "vit_base_patch16_224.mae",
|
224 |
+
"DeiT-III": "deit3_base_patch16_224.fb_in1k"
|
225 |
+
}
|
226 |
+
|
227 |
+
our_model_card = {
|
228 |
+
"DINOv2": "dinov2_small_fine",
|
229 |
+
"DINOv2-reg": "dinov2_reg_small_fine",
|
230 |
+
"CLIP": "clip_base_fine",
|
231 |
+
"MAE": "mae_base_fine",
|
232 |
+
"DeiT-III": "deit3_base_fine"
|
233 |
+
}
|
234 |
+
|
235 |
+
|
236 |
+
os.environ['TORCH_HOME'] = '/tmp/.cache'
|
237 |
+
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
|
238 |
+
|
239 |
+
# Pre-load all models
|
240 |
+
original_models, fine_models = load_model(options)
|
241 |
+
|
242 |
+
def fit3d(image, model_option, kmeans_num):
|
243 |
+
|
244 |
+
# Select model
|
245 |
+
original_model = original_models[model_option]
|
246 |
+
fine_model = fine_models[model_option]
|
247 |
+
|
248 |
+
# Data preprocessing
|
249 |
+
p = original_model.patch_embed.patch_size
|
250 |
+
stride = p if isinstance(p, int) else p[0]
|
251 |
+
image_resized = process_image(image, stride, transforms)
|
252 |
+
|
253 |
+
|
254 |
+
with torch.no_grad():
|
255 |
+
ori_feats = original_model.get_intermediate_layers(image_resized, n=[8,9,10,11], reshape=True, return_prefix_tokens=False,
|
256 |
+
return_class_token=False, norm=True)
|
257 |
+
fine_feats = fine_model.get_intermediate_layers(image_resized, n=[8,9,10,11], reshape=True, return_prefix_tokens=False,
|
258 |
+
return_class_token=False, norm=True)
|
259 |
+
|
260 |
+
ori_feats = ori_feats[-1]
|
261 |
+
fine_feats = fine_feats[-1]
|
262 |
+
|
263 |
+
ori_labels = kmeans_clustering(ori_feats, kmeans_num)
|
264 |
+
fine_labels = kmeans_clustering(fine_feats, kmeans_num)
|
265 |
+
|
266 |
+
return plot_feats(model_option, ori_feats, fine_feats, ori_labels, fine_labels)
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
demo = gr.Interface(
|
272 |
+
title="<div> \
|
273 |
+
<h1>FiT3D</h1> \
|
274 |
+
<h2>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</h2> \
|
275 |
+
<h2>ECCV 2024</h2> \
|
276 |
+
</div>",
|
277 |
+
description="<div style='display: flex; justify-content: center; align-items: center; text-align: center;'> \
|
278 |
+
<a href='https://arxiv.org/abs/2407.20229'><img src='https://img.shields.io/badge/arXiv-2407.20229-red'></a> \
|
279 |
+
\
|
280 |
+
<a href='https://ywyue.github.io/FiT3D'><img src='https://img.shields.io/badge/Project_Page-FiT3D-green' alt='Project Page'></a> \
|
281 |
+
\
|
282 |
+
<a href='https://github.com/ywyue/FiT3D'><img src='https://img.shields.io/badge/Github-Code-blue'></a> \
|
283 |
+
</div>",
|
284 |
+
fn=fit3d,
|
285 |
+
inputs=[image_input, model_option, kmeans_num],
|
286 |
+
outputs="plot",
|
287 |
+
examples=[
|
288 |
+
["/tmp/examples/library.jpg", "DINOv2"],
|
289 |
+
["/tmp/examples/livingroom.jpg", "DINOv2"],
|
290 |
+
["/tmp/examples/airplane.jpg", "DINOv2"],
|
291 |
+
["/tmp/examples/ship.jpg", "DINOv2"],
|
292 |
+
["/tmp/examples/chair.jpg", "DINOv2"],
|
293 |
+
])
|
294 |
+
demo.launch()
|
295 |
+
|