Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Train a diffusion model on images. | |
| """ | |
| import random | |
| import json | |
| import sys | |
| import os | |
| sys.path.append('.') | |
| import torch.distributed as dist | |
| import traceback | |
| import torch as th | |
| import torch.multiprocessing as mp | |
| import numpy as np | |
| import argparse | |
| import dnnlib | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.script_util import ( | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| # from nsr.train_util import TrainLoop3DRec as TrainLoop | |
| from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch, TrainLoop3DRecNVPatchSingleForward, TrainLoop3DRecNVPatchSingleForwardMV, TrainLoop3DRecNVPatchSingleForwardMVAdvLoss | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
| from nsr.losses.builder import E3DGELossClass, E3DGE_with_AdvLoss | |
| from pdb import set_trace as st | |
| # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
| # th.backends.cuda.matmul.allow_tf32 = True | |
| # th.backends.cudnn.allow_tf32 = True | |
| # th.backends.cudnn.enabled = True | |
| enable_tf32 = th.backends.cuda.matmul.allow_tf32 # requires A100 | |
| th.backends.cuda.matmul.allow_tf32 = enable_tf32 | |
| th.backends.cudnn.allow_tf32 = enable_tf32 | |
| th.backends.cudnn.enabled = True | |
| def training_loop(args): | |
| # def training_loop(args): | |
| dist_util.setup_dist(args) | |
| # th.autograd.set_detect_anomaly(True) # type: ignore | |
| th.autograd.set_detect_anomaly(False) # type: ignore | |
| # https://blog.csdn.net/qq_41682740/article/details/126304613 | |
| SEED = args.seed | |
| # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
| logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
| th.cuda.set_device(args.local_rank) | |
| th.cuda.empty_cache() | |
| # * deterministic algorithms flags | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| random.seed(SEED) | |
| # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
| logger.configure(dir=args.logdir) | |
| logger.log("creating encoder and NSR decoder...") | |
| # device = dist_util.dev() | |
| device = th.device("cuda", args.local_rank) | |
| # shared eg3d opts | |
| opts = eg3d_options_default() | |
| if args.sr_training: | |
| args.sr_kwargs = dnnlib.EasyDict( | |
| channel_base=opts.cbase, | |
| channel_max=opts.cmax, | |
| fused_modconv_default='inference_only', | |
| use_noise=True | |
| ) # ! close noise injection? since noise_mode='none' in eg3d | |
| auto_encoder = create_3DAE_model( | |
| **args_to_dict(args, | |
| encoder_and_nsr_defaults().keys())) | |
| auto_encoder.to(device) | |
| auto_encoder.train() | |
| logger.log("creating data loader...") | |
| # data = load_data( | |
| # st() | |
| if args.objv_dataset: | |
| from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data | |
| else: # shapenet | |
| from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
| if args.overfitting: | |
| data = load_memory_data( | |
| file_path=args.data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| # load_depth=args.depth_lambda > 0 | |
| # load_depth=True, # for evaluation | |
| **args_to_dict(args, | |
| dataset_defaults().keys())) | |
| eval_data = None | |
| else: | |
| if args.use_wds: | |
| # st() | |
| if args.data_dir == 'NONE': | |
| with open(args.shards_lst) as f: | |
| shards_lst = [url.strip() for url in f.readlines()] | |
| data = load_wds_data( | |
| shards_lst, # type: ignore | |
| args.image_size, | |
| args.image_size_encoder, | |
| args.batch_size, | |
| args.num_workers, | |
| # plucker_embedding=args.plucker_embedding, | |
| # mv_input=args.mv_input, | |
| # split_chunk_input=args.split_chunk_input, | |
| **args_to_dict(args, | |
| dataset_defaults().keys())) | |
| elif not args.inference: | |
| data = load_wds_data(args.data_dir, | |
| args.image_size, | |
| args.image_size_encoder, | |
| args.batch_size, | |
| args.num_workers, | |
| plucker_embedding=args.plucker_embedding, | |
| mv_input=args.mv_input, | |
| split_chunk_input=args.split_chunk_input) | |
| else: | |
| data = None | |
| # ! load eval | |
| if args.eval_data_dir == 'NONE': | |
| with open(args.eval_shards_lst) as f: | |
| eval_shards_lst = [url.strip() for url in f.readlines()] | |
| else: | |
| eval_shards_lst = args.eval_data_dir # auto expanded | |
| eval_data = load_wds_data( | |
| eval_shards_lst, # type: ignore | |
| args.image_size, | |
| args.image_size_encoder, | |
| args.eval_batch_size, | |
| args.num_workers, | |
| # decode_encode_img_only=args.decode_encode_img_only, | |
| # plucker_embedding=args.plucker_embedding, | |
| # load_wds_diff=False, | |
| # mv_input=args.mv_input, | |
| # split_chunk_input=args.split_chunk_input, | |
| **args_to_dict(args, | |
| dataset_defaults().keys())) | |
| # load_instance=True) # TODO | |
| else: | |
| if args.inference: | |
| data = None | |
| else: | |
| data = load_data( | |
| file_path=args.data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| **args_to_dict(args, | |
| dataset_defaults().keys()) | |
| ) | |
| if args.pose_warm_up_iter > 0: | |
| overfitting_dataset = load_memory_data( | |
| file_path=args.data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| # load_depth=args.depth_lambda > 0 | |
| # load_depth=True # for evaluation | |
| **args_to_dict(args, | |
| dataset_defaults().keys())) | |
| data = [data, overfitting_dataset, args.pose_warm_up_iter] | |
| eval_data = load_eval_data( | |
| file_path=args.eval_data_dir, | |
| batch_size=args.eval_batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| load_depth=True, # for evaluation | |
| preprocess=auto_encoder.preprocess, | |
| # interval=args.interval, | |
| # use_lmdb=args.use_lmdb, | |
| # plucker_embedding=args.plucker_embedding, | |
| # load_real=args.load_real, | |
| # four_view_for_latent=args.four_view_for_latent, | |
| # load_extra_36_view=args.load_extra_36_view, | |
| # shuffle_across_cls=args.shuffle_across_cls, | |
| **args_to_dict(args, | |
| dataset_defaults().keys())) | |
| logger.log("creating data loader done...") | |
| args.img_size = [args.image_size_encoder] | |
| # try dry run | |
| # batch = next(data) | |
| # batch = None | |
| # logger.log("creating model and diffusion...") | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
| opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
| # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
| if 'disc' in args.trainer_name: | |
| loss_class = E3DGE_with_AdvLoss( | |
| device, | |
| opt, | |
| # disc_weight=args.patchgan_disc, # rec_cvD_lambda | |
| disc_factor=args.patchgan_disc_factor, # reduce D update speed | |
| disc_weight=args.patchgan_disc_g_weight).to(device) | |
| else: | |
| loss_class = E3DGELossClass(device, opt).to(device) | |
| # writer = SummaryWriter() # TODO, add log dir | |
| logger.log("training...") | |
| TrainLoop = { | |
| 'input_rec': TrainLoop3DRec, | |
| 'nv_rec': TrainLoop3DRecNV, | |
| # 'nv_rec_patch': TrainLoop3DRecNVPatch, | |
| 'nv_rec_patch': TrainLoop3DRecNVPatchSingleForward, | |
| 'nv_rec_patch_mvE': TrainLoop3DRecNVPatchSingleForwardMV, | |
| 'nv_rec_patch_mvE_disc': TrainLoop3DRecNVPatchSingleForwardMVAdvLoss, # default for objaverse | |
| }[args.trainer_name] | |
| logger.log("creating TrainLoop done...") | |
| # th._dynamo.config.verbose=True # th212 required | |
| # th._dynamo.config.suppress_errors = True | |
| auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs | |
| train_loop = TrainLoop( | |
| rec_model=auto_encoder, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| # compile=args.compile, | |
| **vars(args)) | |
| if args.inference: | |
| # camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev()) # 40, 25 | |
| camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:24] # 40, 25 | |
| train_loop.eval_novelview_loop(camera=camera, | |
| save_latent=args.save_latent) | |
| else: | |
| train_loop.run_loop() | |
| def create_argparser(**kwargs): | |
| # defaults.update(model_and_diffusion_defaults()) | |
| defaults = dict( | |
| seed=0, | |
| dataset_size=-1, | |
| trainer_name='input_rec', | |
| use_amp=False, | |
| overfitting=False, | |
| num_workers=4, | |
| image_size=128, | |
| image_size_encoder=224, | |
| iterations=150000, | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| eval_batch_size=12, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| data_dir="", | |
| eval_data_dir="", | |
| # load_depth=False, # TODO | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| # test warm up pose sampling training | |
| pose_warm_up_iter=-1, | |
| inference=False, | |
| export_latent=False, | |
| save_latent=False, | |
| ) | |
| defaults.update(dataset_defaults()) # type: ignore | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| # os.environ[ | |
| # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
| # os.environ["NCCL_DEBUG"]="INFO" | |
| args = create_argparser().parse_args() | |
| args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| # if os.environ['WORLD_SIZE'] > 1: | |
| # args.global_rank = int(os.environ["RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| opts = args | |
| args.rendering_kwargs = rendering_options_defaults(opts) | |
| # print(args) | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| # Launch processes. | |
| print('Launching processes...') | |
| try: | |
| training_loop(args) | |
| # except KeyboardInterrupt as e: | |
| except Exception as e: | |
| # print(e) | |
| traceback.print_exc() | |
| dist_util.cleanup() # clean port and socket when ctrl+c | |