Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Generate a large batch of image samples from a model and save them as a large | |
| numpy array. This can be used to produce samples for FID evaluation. | |
| """ | |
| import argparse | |
| import json | |
| import sys | |
| import os | |
| sys.path.append('.') | |
| from pdb import set_trace as st | |
| import imageio | |
| import numpy as np | |
| import torch as th | |
| import torch.distributed as dist | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.script_util import ( | |
| NUM_CLASSES, | |
| model_and_diffusion_defaults, | |
| create_model_and_diffusion, | |
| add_dict_to_argparser, | |
| args_to_dict, | |
| continuous_diffusion_defaults, | |
| control_net_defaults, | |
| ) | |
| from pathlib import Path | |
| from tqdm import tqdm, trange | |
| import dnnlib | |
| from dnnlib.util import EasyDict, InfiniteSampler | |
| from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop | |
| from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion | |
| import nsr | |
| import nsr.lsgm | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
| from datasets.shapenet import load_eval_data | |
| from torch.utils.data import Subset | |
| from datasets.eg3d_dataset import init_dataset_kwargs | |
| from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d | |
| SEED = 0 | |
| def main(args): | |
| # args.rendering_kwargs = rendering_options_defaults(args) | |
| dist_util.setup_dist(args) | |
| logger.configure(dir=args.logdir) | |
| th.cuda.empty_cache() | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| # * set denoise model args | |
| logger.log("creating model and diffusion...") | |
| args.img_size = [args.image_size_encoder] | |
| # ! no longer required for LDM | |
| # args.denoise_in_channels = args.out_chans | |
| # args.denoise_out_channels = args.out_chans | |
| args.image_size = args.image_size_encoder # 224, follow the triplane size | |
| denoise_model, diffusion = create_model_and_diffusion( | |
| **args_to_dict(args, | |
| model_and_diffusion_defaults().keys())) | |
| if 'cldm' in args.trainer_name: | |
| assert isinstance(denoise_model, tuple) | |
| denoise_model, controlNet = denoise_model | |
| controlNet.to(dist_util.dev()) | |
| controlNet.train() | |
| else: | |
| controlNet = None | |
| opts = eg3d_options_default() | |
| if args.sr_training: | |
| args.sr_kwargs = dnnlib.EasyDict( | |
| channel_base=opts.cbase, | |
| channel_max=opts.cmax, | |
| fused_modconv_default='inference_only', | |
| use_noise=True | |
| ) # ! close noise injection? since noise_mode='none' in eg3d | |
| # denoise_model.load_state_dict( | |
| # dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu")) | |
| denoise_model.to(dist_util.dev()) | |
| if args.use_fp16: | |
| denoise_model.convert_to_fp16() | |
| denoise_model.eval() | |
| # * auto-encoder reconstruction model | |
| logger.log("creating 3DAE...") | |
| auto_encoder = create_3DAE_model( | |
| **args_to_dict(args, | |
| encoder_and_nsr_defaults().keys())) | |
| # logger.log("AE triplane decoder reuses G_ema decoder...") | |
| # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) | |
| # print(auto_encoder.decoder.w_avg.shape) # [512] | |
| # auto_encoder.load_state_dict( | |
| # dist_util.load_state_dict(args.rec_model_path, map_location="cpu")) | |
| auto_encoder.to(dist_util.dev()) | |
| auto_encoder.eval() | |
| # TODO, how to set the scale? | |
| logger.log("create dataset") | |
| # data = None | |
| if args.objv_dataset: | |
| from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data | |
| else: # shapenet | |
| from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
| eval_data = None | |
| # if args.cfg in ('afhq', 'ffhq'): | |
| # # ! load data | |
| # if args.use_lmdb: | |
| # logger.log("creating LMDB eg3d data loader...") | |
| # training_set = LMDBDataset_MV_Compressed_eg3d( | |
| # args.data_dir, | |
| # args.image_size, | |
| # args.image_size_encoder, | |
| # ) | |
| # else: | |
| # logger.log("creating eg3d data loader...") | |
| # training_set_kwargs, dataset_name = init_dataset_kwargs( | |
| # data=args.data_dir, | |
| # class_name='datasets.eg3d_dataset.ImageFolderDataset' | |
| # ) # only load pose here | |
| # # if args.cond and not training_set_kwargs.use_labels: | |
| # # raise Exception('check here') | |
| # # training_set_kwargs.use_labels = args.cond | |
| # training_set_kwargs.use_labels = True | |
| # training_set_kwargs.xflip = True | |
| # training_set_kwargs.random_seed = SEED | |
| # # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
| # # * construct ffhq/afhq dataset | |
| # training_set = dnnlib.util.construct_class_by_name( | |
| # **training_set_kwargs) # subclass of training.dataset.Dataset | |
| # training_set = dnnlib.util.construct_class_by_name( | |
| # **training_set_kwargs) # subclass of training.dataset.Dataset | |
| # # training_set_sampler = InfiniteSampler( | |
| # # dataset=training_set, | |
| # # rank=dist_util.get_rank(), | |
| # # num_replicas=dist_util.get_world_size(), | |
| # # seed=SEED) | |
| # # data = iter( | |
| # # th.utils.data.DataLoader(dataset=training_set, | |
| # # sampler=training_set_sampler, | |
| # # batch_size=args.batch_size, | |
| # # pin_memory=True, | |
| # # num_workers=args.num_workers,)) | |
| # # # prefetch_factor=2)) | |
| # # training_set_sampler = InfiniteSampler( | |
| # # dataset=training_set, | |
| # # rank=dist_util.get_rank(), | |
| # # num_replicas=dist_util.get_world_size(), | |
| # # seed=SEED) | |
| # # data = iter( | |
| # # th.utils.data.DataLoader( | |
| # # dataset=training_set, | |
| # # sampler=training_set_sampler, | |
| # # batch_size=args.batch_size, | |
| # # pin_memory=True, | |
| # # num_workers=args.num_workers, | |
| # # persistent_workers=args.num_workers > 0, | |
| # # # prefetch_factor=max(8//args.batch_size, 2), | |
| # # )) | |
| # eval_data = th.utils.data.DataLoader(dataset=Subset( | |
| # training_set, np.arange(25)), | |
| # batch_size=args.eval_batch_size, | |
| # num_workers=1) | |
| # else: | |
| # logger.log("creating data loader...") | |
| # # if args.objv_dataset: | |
| # # from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data | |
| # # else: # shapenet | |
| # # from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
| # # eval_data = load_eval_data( | |
| # # file_path=args.eval_data_dir, | |
| # # batch_size=args.eval_batch_size, | |
| # # reso=args.image_size, | |
| # # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # # num_workers=args.num_workers, | |
| # # load_depth=True, # for evaluation | |
| # # interval=args.interval, | |
| # # use_lmdb=args.use_lmdb, | |
| # # ) | |
| # if args.use_wds: | |
| # if args.eval_data_dir == 'NONE': | |
| # with open(args.eval_shards_lst) as f: | |
| # eval_shards_lst = [url.strip() for url in f.readlines()] | |
| # else: | |
| # eval_shards_lst = args.eval_data_dir # auto expanded | |
| # eval_data = load_wds_data( | |
| # eval_shards_lst, args.image_size, args.image_size_encoder, | |
| # args.eval_batch_size, args.num_workers, | |
| # **args_to_dict(args, | |
| # dataset_defaults().keys())) | |
| # else: | |
| # eval_data = load_eval_data( | |
| # file_path=args.eval_data_dir, | |
| # batch_size=args.eval_batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # # load_depth=True, # for evaluation | |
| # **args_to_dict(args, | |
| # dataset_defaults().keys())) | |
| TrainLoop = { | |
| 'adm': nsr.TrainLoop3DDiffusion, | |
| 'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn, | |
| }[args.trainer_name] | |
| # continuous | |
| if 'vpsde' in args.trainer_name: | |
| sde_diffusion = make_sde_diffusion( | |
| dnnlib.EasyDict( | |
| args_to_dict(args, | |
| continuous_diffusion_defaults().keys()))) | |
| assert args.mixed_prediction, 'enable mixed_prediction by default' | |
| logger.log('create VPSDE diffusion.') | |
| else: | |
| sde_diffusion = None | |
| # if 'cldm' in args.trainer_name: | |
| # assert isinstance(denoise_model, tuple) | |
| # denoise_model, controlNet = denoise_model | |
| # controlNet.to(dist_util.dev()) | |
| # controlNet.train() | |
| # else: | |
| # controlNet = None | |
| training_loop_class = TrainLoop(rec_model=auto_encoder, | |
| denoise_model=denoise_model, | |
| control_model=controlNet, | |
| diffusion=diffusion, | |
| sde_diffusion=sde_diffusion, | |
| loss_class=None, | |
| data=None, | |
| eval_data=eval_data, | |
| **vars(args)) | |
| logger.log("sampling...") | |
| dist_util.synchronize() | |
| # all_images = [] | |
| # all_labels = [] | |
| # while len(all_images) * args.batch_size < args.num_samples: | |
| if dist_util.get_rank() == 0: | |
| (Path(logger.get_dir()) / 'FID_Cals').mkdir(exist_ok=True, | |
| parents=True) | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| # load eval pose | |
| if args.cfg == 'ffhq': | |
| camera = th.load('assets/ffhq_eval_pose.pt', | |
| map_location=dist_util.dev())[:] | |
| elif args.cfg == 'shapenet': | |
| camera = th.load('assets/shapenet_eval_pose.pt', | |
| map_location=dist_util.dev())[:] | |
| for sample_idx in trange(args.num_samples): | |
| model_kwargs = {} | |
| # if args.class_cond: | |
| # classes = th.randint(low=0, | |
| # high=NUM_CLASSES, | |
| # size=(args.batch_size, ), | |
| # device=dist_util.dev()) | |
| # model_kwargs["y"] = classes | |
| training_loop_class.step = sample_idx # save to different position | |
| if args.create_controlnet or 'crossattn' in args.trainer_name: | |
| training_loop_class.eval_cldm( | |
| prompt=args.prompt, | |
| unconditional_guidance_scale=args. | |
| unconditional_guidance_scale, | |
| use_ddim=args.use_ddim, | |
| save_img=args.save_img, | |
| use_train_trajectory=args.use_train_trajectory, | |
| export_mesh=args.export_mesh, | |
| camera=camera, | |
| overwrite_diff_inp_size=args.overwrite_diff_inp_size, | |
| # training_loop_class.rec_model, | |
| # training_loop_class.ddpm_model | |
| ) | |
| else: | |
| # evaluate ldm | |
| training_loop_class.eval_ddpm_sample( | |
| training_loop_class.rec_model, | |
| save_img=args.save_img, | |
| use_train_trajectory=args.use_train_trajectory, | |
| export_mesh=args.export_mesh, | |
| camera=camera, | |
| # training_loop_class.ddpm_model | |
| ) | |
| dist.barrier() | |
| logger.log("sampling complete") | |
| def create_argparser(): | |
| defaults = dict( | |
| image_size_encoder=224, | |
| triplane_scaling_divider=1.0, # divide by this value | |
| diffusion_input_size=-1, | |
| trainer_name='adm', | |
| use_amp=False, | |
| # triplane_scaling_divider=1.0, # divide by this value | |
| # * sampling flags | |
| clip_denoised=False, | |
| num_samples=10, | |
| use_ddim=False, | |
| ddpm_model_path="", | |
| cldm_model_path="", | |
| rec_model_path="", | |
| # * eval logging flags | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| data_dir="", | |
| eval_data_dir="", | |
| eval_batch_size=1, | |
| num_workers=1, | |
| # * training flags for loading TrainingLoop class | |
| overfitting=False, | |
| image_size=128, | |
| iterations=150000, | |
| schedule_sampler="uniform", | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| resume_cldm_checkpoint="", | |
| resume_checkpoint_EG3D="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| load_submodule_name='', # for loading pretrained auto_encoder model | |
| ignore_resume_opt=False, | |
| freeze_ae=False, | |
| denoised_ae=True, | |
| # inference prompt | |
| prompt="a red chair", | |
| interval=1, | |
| objv_dataset=False, | |
| use_lmdb=False, | |
| save_img=False, | |
| use_train_trajectory= | |
| False, # use train trajectory to sample images for fid calculation | |
| unconditional_guidance_scale=1.0, | |
| cond_key='img_sr', | |
| use_eos_feature=False, | |
| export_mesh=False, | |
| overwrite_diff_inp_size=None, | |
| allow_tf32=True, | |
| ) | |
| defaults.update(model_and_diffusion_defaults()) | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| defaults.update(continuous_diffusion_defaults()) | |
| defaults.update(control_net_defaults()) | |
| defaults.update(dataset_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
| # os.environ["NCCL_DEBUG"] = "INFO" | |
| os.environ[ | |
| "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| args = create_argparser().parse_args() | |
| args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| args.rendering_kwargs = rendering_options_defaults(args) | |
| main(args) | |