import gradio as gr import random text_to_text_gm130b = gr.Blocks.load(name="spaces/THUDM/GLM-130B") def block_inference(prompt): #thudm glm 130 b space #generated_text = text_to_text_gm130b(model_input=prompt, seed=1234, out_seq_length=256, min_gen_length=0, sampling_strategy='BeamSearchStrategy', num_beams=2, length_penalty=1, no_repeat_ngram_size=3, temperature=0.7, topk=1, topp=0) generated_text = text_to_text_gm130b(prompt, 1234, 256, 0, 'BeamSearchStrategy', 2, 1, 3, 0.7, 1, 0) return generated_text def state_player(message, history): history = history or [] message = message.lower() response = block_inference(message) history.append((message, response)) return history, history #text_editor = gr.Textbox(lines=20, interactive=True, ) #embed_docs = gr.HTML() #demo = gr.Interface( # state_player, # [text_editor, "state"], # [text_editor, "state"], # allow_flagging="never", #) #if __name__ == "__main__": # demo.launch() css = """ #g-doc {min-height: 500px; min-width: 500px;} """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} with gr.Blocks(css=css) as demo: with gr.Row(): text_editor = gr.Textbox(lines=20, interactive=True, ) state = gr.State() with gr.Row(): b1 = gr.Button("Generate") #b2 = gr.Button("Docs API") with gr.Row(): #in_dummy = gr.Textbox(visible=False) #, value='dummy') embed_docs = gr.HTML(elem_id = "g-doc") b1.click(fn=state_player, inputs=[text_editor,state], outputs=[text_editor,state]) demo.launch(debug=True, enable_queue=True)