ysharma's picture
ysharma HF Staff
Update config.py
6fc3759 verified
raw
history blame
7.05 kB
"""
Configuration module for Universal MCP Client
Enhanced with HuggingFace Inference Provider support
"""
import os
from dataclasses import dataclass
from typing import Optional, Dict, List
import logging
# Set up enhanced logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class MCPServerConfig:
"""Configuration for an MCP server connection"""
name: str
url: str
description: str
space_id: Optional[str] = None
class AppConfig:
"""Application configuration settings"""
# API Configuration
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
# Model Configuration
CLAUDE_MODEL = "claude-sonnet-4-20250514"
MAX_TOKENS = 2048
# MCP Configuration
MCP_BETA_VERSION = "mcp-client-2025-04-04"
MCP_TIMEOUT_SECONDS = 20.0
# UI Configuration
GRADIO_THEME = "citrus"
DEBUG_MODE = True
# File Support
SUPPORTED_IMAGE_EXTENSIONS = ['.png', '.jpg', '.jpeg', '.gif', '.webp']
SUPPORTED_AUDIO_EXTENSIONS = ['.mp3', '.wav', '.ogg', '.m4a', '.flac']
SUPPORTED_VIDEO_EXTENSIONS = ['.mp4', '.avi', '.mov']
SUPPORTED_DOCUMENT_EXTENSIONS = ['.pdf', '.txt', '.docx']
# Inference Providers Configuration
INFERENCE_PROVIDERS = {
"sambanova": {
"name": "SambaNova",
"description": "Ultra-fast inference on optimized hardware",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-0528",
"meta-llama/Llama-4-Maverick-17B-128E-Instruct",
"intfloat/e5-mistral-7b-instruct"
]
},
"together": {
"name": "Together AI",
"description": "High-performance inference for open models",
"supports_tools": True,
"models": [
"deepseek-ai/DeepSeek-V3-0324",
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"black-forest-labs/FLUX.1-dev"
]
},
"replicate": {
"name": "Replicate",
"description": "Run AI models in the cloud",
"supports_tools": True,
"models": [
"meta/llama-2-70b-chat",
"mistralai/mixtral-8x7b-instruct-v0.1",
"black-forest-labs/flux-schnell"
]
},
"groq": {
"name": "Groq",
"description": "Ultra-low latency LPU inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"llama-3.1-70b-versatile",
"mixtral-8x7b-32768"
]
},
"fal-ai": {
"name": "fal.ai",
"description": "Fast AI model inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.1-8B-Instruct",
"black-forest-labs/flux-pro"
]
},
"fireworks-ai": {
"name": "Fireworks AI",
"description": "Production-ready inference platform",
"supports_tools": True,
"models": [
"accounts/fireworks/models/llama-v3p1-70b-instruct",
"accounts/fireworks/models/mixtral-8x7b-instruct"
]
},
"cohere": {
"name": "Cohere",
"description": "Enterprise-grade language AI",
"supports_tools": True,
"models": [
"command-r-plus",
"command-r",
"command"
]
},
"hf-inference": {
"name": "HF Inference",
"description": "Hugging Face serverless inference",
"supports_tools": True,
"models": [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"microsoft/DialoGPT-medium",
"intfloat/multilingual-e5-large"
]
}
}
@classmethod
def get_all_media_extensions(cls):
"""Get all supported media file extensions"""
return (cls.SUPPORTED_IMAGE_EXTENSIONS +
cls.SUPPORTED_AUDIO_EXTENSIONS +
cls.SUPPORTED_VIDEO_EXTENSIONS)
@classmethod
def is_image_file(cls, file_path: str) -> bool:
"""Check if file is an image"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_IMAGE_EXTENSIONS)
@classmethod
def is_audio_file(cls, file_path: str) -> bool:
"""Check if file is an audio file"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_AUDIO_EXTENSIONS)
@classmethod
def is_video_file(cls, file_path: str) -> bool:
"""Check if file is a video file"""
return any(ext in file_path.lower() for ext in cls.SUPPORTED_VIDEO_EXTENSIONS)
@classmethod
def is_media_file(cls, file_path: str) -> bool:
"""Check if file is any supported media type"""
return any(ext in file_path.lower() for ext in cls.get_all_media_extensions())
@classmethod
def get_provider_models(cls, provider: str) -> List[str]:
"""Get available models for a specific provider"""
return cls.INFERENCE_PROVIDERS.get(provider, {}).get("models", [])
@classmethod
def get_all_providers(cls) -> Dict[str, Dict]:
"""Get all available inference providers"""
return cls.INFERENCE_PROVIDERS
# Check for dependencies
try:
import httpx
HTTPX_AVAILABLE = True
except ImportError:
HTTPX_AVAILABLE = False
logger.warning("httpx not available - file upload functionality limited")
try:
from huggingface_hub import InferenceClient
HF_INFERENCE_AVAILABLE = True
except ImportError:
HF_INFERENCE_AVAILABLE = False
logger.warning("huggingface_hub not available - inference provider functionality limited")
# CSS Configuration
CUSTOM_CSS = """
/* Hide Gradio footer */
footer {
display: none !important;
}
/* Make chatbot expand to fill available space */
.gradio-container {
height: 100vh !important;
}
/* Ensure proper flex layout */
.main-content {
display: flex;
flex-direction: column;
height: 100%;
}
/* Input area stays at bottom with minimal padding */
.input-area {
margin-top: auto;
padding-top: 0.25rem !important;
padding-bottom: 0 !important;
margin-bottom: 0 !important;
}
/* Reduce padding around chatbot */
.chatbot {
margin-bottom: 0 !important;
padding-bottom: 0 !important;
}
/* Provider selection styling */
.provider-selection {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
margin: 5px 0;
}
.anthropic-config {
background-color: #f8f9fa;
border-left: 4px solid #28a745;
}
.hf-config {
background-color: #fff8e1;
border-left: 4px solid #ff9800;
}
"""