Spaces:
Sleeping
Sleeping
File size: 25,005 Bytes
ca9d99e 87bbbcd ca9d99e 87bbbcd ca9d99e 358b475 ca9d99e 87bbbcd ca9d99e ed8fa70 87bbbcd ca9d99e 87bbbcd 358b475 ca9d99e 87bbbcd ca9d99e ed8fa70 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 87bbbcd ca9d99e 87bbbcd ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 87bbbcd ca9d99e 87bbbcd ca9d99e ed8fa70 358b475 ed8fa70 ca9d99e ed8fa70 ca9d99e 87bbbcd ca9d99e 87bbbcd 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 263fdd5 ca9d99e 263fdd5 ca9d99e 263fdd5 ca9d99e 263fdd5 ca9d99e 358b475 263fdd5 ca9d99e 263fdd5 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 ca9d99e 358b475 263fdd5 ca9d99e ffeaa56 ca9d99e 358b475 ffeaa56 69fa6dd 8648d06 69fa6dd 358b475 ca9d99e 358b475 ca9d99e 263fdd5 358b475 ca9d99e 358b475 ca9d99e 69fa6dd ca9d99e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
"""
Chat handling logic for Universal MCP Client - Enhanced with Inference Provider Support
"""
import re
import logging
import traceback
import asyncio
from datetime import datetime
from typing import Dict, Any, List, Tuple, Optional
import gradio as gr
from gradio import ChatMessage
import time
from config import AppConfig
from mcp_client import UniversalMCPClient
logger = logging.getLogger(__name__)
class ChatHandler:
"""Handles chat interactions with multiple LLM backends and MCP servers using ChatMessage dataclass"""
def __init__(self, mcp_client: UniversalMCPClient):
self.mcp_client = mcp_client
def process_multimodal_message(self, message: Dict[str, Any], history: List) -> Tuple[List[ChatMessage], Dict[str, Any]]:
"""Enhanced MCP chat function with multimodal input support and multiple LLM backends"""
# Check if any LLM backend is configured
backend_configured = False
if self.mcp_client.anthropic_client and AppConfig.ANTHROPIC_API_KEY:
backend_configured = True
backend_type = "anthropic"
elif self.mcp_client.hf_client and self.mcp_client.current_provider:
backend_configured = True
backend_type = "hf_inference"
if not backend_configured:
error_msg = "β No LLM backend configured. Please configure either Anthropic API key or HuggingFace Inference Provider."
history.append(ChatMessage(role="user", content=error_msg))
history.append(ChatMessage(role="assistant", content=error_msg))
return history, gr.MultimodalTextbox(value=None, interactive=False)
# Initialize variables for error handling
user_text = ""
user_files = []
try:
# Handle multimodal input - message is a dict with 'text' and 'files'
user_text = message.get("text", "") if message else ""
user_files = message.get("files", []) if message else []
# Handle case where message might be a string (backward compatibility)
if isinstance(message, str):
user_text = message
user_files = []
logger.info(f"π¬ Processing multimodal message with {backend_type} backend:")
logger.info(f" π Text: {user_text}")
logger.info(f" π Files: {len(user_files)} files uploaded")
logger.info(f" π History type: {type(history)}, length: {len(history)}")
# Convert history to ChatMessage objects if needed
converted_history = []
for i, msg in enumerate(history):
try:
if isinstance(msg, dict):
# Convert dict to ChatMessage for internal processing
logger.info(f" π Converting dict message {i}: {msg.get('role', 'unknown')}")
converted_history.append(ChatMessage(
role=msg.get('role', 'assistant'),
content=msg.get('content', ''),
metadata=msg.get('metadata', None)
))
else:
# Already a ChatMessage
logger.info(f" β
ChatMessage {i}: {getattr(msg, 'role', 'unknown')}")
converted_history.append(msg)
except Exception as conv_error:
logger.error(f"Error converting message {i}: {conv_error}")
logger.error(f"Message content: {msg}")
# Skip problematic messages
continue
history = converted_history
# Add uploaded files to chat history first
for file_path in user_files:
logger.info(f" π File: {file_path}")
history.append(ChatMessage(role="user", content={"path": file_path}))
# Add text message if provided
if user_text and user_text.strip():
history.append(ChatMessage(role="user", content=user_text))
# If no text and no files, return early
if not user_text.strip() and not user_files:
return history, gr.MultimodalTextbox(value=None, interactive=False)
# Create messages for LLM API
messages = self._prepare_llm_messages(history)
# Process the chat based on backend type
if backend_type == "anthropic":
response_messages = self._call_anthropic_api(messages, user_files)
else: # hf_inference
response_messages = self._call_hf_inference_api(messages, user_files)
# Add all response messages to history
history.extend(response_messages)
return history, gr.MultimodalTextbox(value=None, interactive=False)
except Exception as e:
error_msg = f"β Error: {str(e)}"
logger.error(f"Chat error: {e}")
logger.error(traceback.format_exc())
# Add user input to history if it exists
if user_text and user_text.strip():
history.append(ChatMessage(role="user", content=user_text))
if user_files:
for file_path in user_files:
history.append(ChatMessage(role="user", content={"path": file_path}))
history.append(ChatMessage(role="assistant", content=error_msg))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def _prepare_llm_messages(self, history: List) -> List[Dict[str, Any]]:
"""Convert history (ChatMessage or dict) to LLM API format"""
messages = []
# Convert history to LLM API format (text only for context)
recent_history = history[-16:] if len(history) > 16 else history
for msg in recent_history:
# Handle both ChatMessage objects and dictionary format for backward compatibility
if hasattr(msg, 'role'): # ChatMessage object
role = msg.role
content = msg.content
elif isinstance(msg, dict) and 'role' in msg: # Dictionary format
role = msg.get('role')
content = msg.get('content')
else:
continue # Skip invalid messages
if role in ["user", "assistant"]:
# Convert any non-string content to string description for context
if isinstance(content, dict):
if "path" in content:
file_path = content.get('path', 'unknown')
# Determine file type for context
if AppConfig.is_image_file(file_path):
content = f"[User uploaded an image: {file_path}]"
elif AppConfig.is_audio_file(file_path):
content = f"[User uploaded an audio file: {file_path}]"
elif AppConfig.is_video_file(file_path):
content = f"[User uploaded a video file: {file_path}]"
else:
content = f"[User uploaded a file: {file_path}]"
else:
content = f"[Object: {str(content)[:50]}...]"
elif isinstance(content, (list, tuple)):
content = f"[List: {str(content)[:50]}...]"
elif content is None:
content = "[Empty]"
else:
content = str(content)
messages.append({
"role": role,
"content": content
})
return messages
def _call_anthropic_api(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[ChatMessage]:
"""Call Anthropic API (existing implementation)"""
# Check if we have MCP servers to use
if not self.mcp_client.servers:
return self._call_claude_without_mcp(messages)
else:
return self._call_claude_with_mcp(messages, user_files)
def _call_hf_inference_api(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[ChatMessage]:
"""Call HuggingFace Inference API with custom MCP implementation"""
# Run async call in sync context
def run_async():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(
self.mcp_client.call_llm_with_mcp(messages, user_files)
)
finally:
loop.close()
try:
return run_async()
except Exception as e:
logger.error(f"HF Inference API error: {e}")
return [ChatMessage(role="assistant", content=f"β Error with HF Inference: {str(e)}")]
def _call_claude_without_mcp(self, messages: List[Dict[str, Any]]) -> List[ChatMessage]:
"""Call Claude API without MCP servers"""
logger.info("π¬ No MCP servers available, using regular Claude chat")
system_prompt = self._get_native_system_prompt()
# Use regular messages API
response = self.mcp_client.anthropic_client.messages.create(
model=AppConfig.CLAUDE_MODEL,
max_tokens=AppConfig.MAX_TOKENS,
system=system_prompt,
messages=messages
)
response_text = ""
for content in response.content:
if content.type == "text":
response_text += content.text
if not response_text:
response_text = "I understand your request and I'm here to help."
return [ChatMessage(role="assistant", content=response_text)]
def _call_claude_with_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[ChatMessage]:
"""Call Claude API with MCP servers and return structured responses"""
mcp_servers = []
for server_name, config in self.mcp_client.servers.items():
mcp_servers.append({
"type": "url",
"url": config.url,
"name": server_name.replace(" ", "_").lower()
})
# Enhanced system prompt with multimodal and MCP instructions
system_prompt = self._get_mcp_system_prompt(user_files)
# Debug logging
logger.info(f"π€ Sending {len(messages)} messages to Claude API")
logger.info(f"π§ Using {len(mcp_servers)} MCP servers")
start_time = time.time()
# Call Claude with MCP connector using the correct beta API
response = self.mcp_client.anthropic_client.beta.messages.create(
model=AppConfig.CLAUDE_MODEL,
max_tokens=AppConfig.MAX_TOKENS,
system=system_prompt,
messages=messages,
mcp_servers=mcp_servers,
betas=[AppConfig.MCP_BETA_VERSION]
)
return self._process_mcp_response(response, start_time)
def _process_mcp_response(self, response, start_time: float) -> List[ChatMessage]:
"""Process Claude's response with MCP tool calls into structured ChatMessage objects"""
chat_messages = []
current_tool_id = None
current_server_name = None
tool_start_time = None
text_segments = [] # Collect text segments separately
# Process Claude's response
for content in response.content:
if content.type == "text":
# Collect text segments but don't combine them yet
text_content = content.text
# Check if Claude indicated media was generated
if "MEDIA_GENERATED:" in text_content:
media_match = re.search(r"MEDIA_GENERATED:\s*([^\s]+)", text_content)
if media_match:
media_url = media_match.group(1)
# Clean up the response text
text_content = re.sub(r"MEDIA_GENERATED:\s*[^\s]+", "", text_content).strip()
logger.info(f"π― Claude indicated media generated: {media_url}")
# Add media as separate message
chat_messages.append(ChatMessage(
role="assistant",
content={"path": media_url}
))
if text_content.strip():
text_segments.append(text_content.strip())
elif hasattr(content, 'type') and content.type == "mcp_tool_use":
# Add any accumulated text before tool use
if text_segments:
combined_text = " ".join(text_segments)
if combined_text.strip():
chat_messages.append(ChatMessage(
role="assistant",
content=combined_text.strip()
))
text_segments = [] # Reset
tool_name = content.name
server_name = content.server_name
current_tool_id = getattr(content, 'id', 'unknown')
current_server_name = server_name
tool_start_time = time.time()
logger.info(f"π§ Claude used MCP tool: {tool_name} on server: {server_name}")
# Create a "thinking" message for tool usage
chat_messages.append(ChatMessage(
role="assistant",
content="",
metadata={
"title": f"π§ Using {tool_name}",
"id": current_tool_id,
"status": "pending",
"log": f"Server: {server_name}"
}
))
elif hasattr(content, 'type') and content.type == "mcp_tool_result":
tool_use_id = getattr(content, 'tool_use_id', 'unknown')
duration = time.time() - tool_start_time if tool_start_time else None
logger.info(f"π Processing MCP tool result (tool_use_id: {tool_use_id})")
# Update the pending tool message to completed
for msg in chat_messages:
if (msg.metadata and
msg.metadata.get("id") == current_tool_id and
msg.metadata.get("status") == "pending"):
msg.metadata["status"] = "done"
if duration:
msg.metadata["duration"] = round(duration, 2)
break
media_url = None
if content.content:
result_content = content.content[0]
result_text = result_content.text if hasattr(result_content, 'text') else str(result_content)
logger.info(f"π MCP tool result: {result_text[:200]}...")
# Try to extract media URL from the result
if current_server_name and current_server_name in self.mcp_client.servers:
config = self.mcp_client.servers[current_server_name]
extracted_media = self.mcp_client._extract_media_from_mcp_response(result_text, config)
if extracted_media:
media_url = extracted_media
logger.info(f"π― Extracted media from MCP result: {media_url}")
else:
# Fallback: try all servers to find media
for server_name, config in self.mcp_client.servers.items():
extracted_media = self.mcp_client._extract_media_from_mcp_response(result_text, config)
if extracted_media:
media_url = extracted_media
logger.info(f"π― Extracted media from MCP result (fallback): {media_url}")
break
# Always show the full tool result
chat_messages.append(ChatMessage(
role="assistant",
content=result_text,
metadata={
"title": "π Tool Result",
"parent_id": current_tool_id,
"status": "done"
}
))
# Only add separate media display if the tool result does NOT contain
# any Gradio file data structures that would be auto-rendered
if media_url and not self._contains_gradio_file_structure(result_text):
logger.info(f"π― Adding separate media display for: {media_url}")
chat_messages.append(ChatMessage(
role="assistant",
content={"path": media_url}
))
else:
if media_url:
logger.info(f"π« Skipping separate media - tool result contains Gradio file structure")
else:
logger.info(f"π« No media URL extracted")
else:
# Add error message for failed tool call
chat_messages.append(ChatMessage(
role="assistant",
content="Tool call failed: No content returned",
metadata={
"title": "β Tool Error",
"parent_id": current_tool_id,
"status": "done"
}
))
# Add any remaining text segments after all processing
if text_segments:
combined_text = " ".join(text_segments)
if combined_text.strip():
chat_messages.append(ChatMessage(
role="assistant",
content=combined_text.strip()
))
# Fallback if no content was processed
if not chat_messages:
chat_messages.append(ChatMessage(
role="assistant",
content="I understand your request and I'm here to help."
))
return chat_messages
def _contains_gradio_file_structure(self, text: str) -> bool:
"""Check if the text contains ANY Gradio file data structures that would be auto-rendered"""
# Check for key indicators of Gradio file structures
gradio_indicators = [
# Gradio FileData type indicators
"'_type': 'gradio.FileData'",
'"_type": "gradio.FileData"',
'gradio.FileData',
# File structure patterns
"'path':",
'"path":',
"'url':",
'"url":',
"'orig_name':",
'"orig_name":',
"'mime_type':",
'"mime_type":',
'is_stream',
'meta_type',
# Common file result patterns
"{'image':",
'{"image":',
"{'audio':",
'{"audio":',
"{'video':",
'{"video":',
"{'file':",
'{"file":',
# List patterns that typically contain file objects
"[{'image'",
'[{"image"',
"[{'audio'",
'[{"audio"',
"[{'video'",
'[{"video"',
"[{'file'",
'[{"file"'
]
# If we find multiple indicators, it's likely a Gradio file structure
indicator_count = sum(1 for indicator in gradio_indicators if indicator in text)
# Also check for simple URL patterns (for audio case)
is_simple_url = (text.strip().startswith('http') and
len(text.strip().split()) == 1 and
any(ext in text.lower() for ext in ['.wav', '.mp3', '.mp4', '.png', '.jpg', '.jpeg', '.gif', '.svg', '.webm', '.ogg']))
result = indicator_count >= 2 or is_simple_url
logger.debug(f"π File structure check: {indicator_count} indicators, simple_url: {is_simple_url}, result: {result}")
return result
def _get_native_system_prompt(self) -> str:
"""Get system prompt for Claude without MCP servers"""
return f"""You are Claude Sonnet 4, a helpful AI assistant with native multimodal capabilities. You can have conversations, answer questions, help with various tasks, and provide information on a wide range of topics.
YOUR NATIVE CAPABILITIES (Available right now):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, identify objects, people, scenes, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
IMPORTANT: You DO NOT need MCP servers for:
- Describing or analyzing uploaded images
- Reading text in images
- Identifying objects, people, or scenes in images
- General conversation and knowledge questions
You DO need MCP servers for:
- Creating new images, audio, or video
- Editing or transforming existing media files
- Transcribing audio files
- Processing non-image files (audio, video, documents)
If users upload images and ask you to describe or analyze them, use your native vision capabilities immediately. Only mention MCP servers if they ask for creation or editing tasks."""
def _get_mcp_system_prompt(self, user_files: List[str]) -> str:
"""Get system prompt for Claude with MCP servers"""
uploaded_files_context = ""
if user_files:
uploaded_files_context = f"\n\nFILES UPLOADED BY USER:\n"
for i, file_path in enumerate(user_files, 1):
file_name = file_path.split('/')[-1] if '/' in file_path else file_path
if AppConfig.is_image_file(file_path):
file_type = "Image"
elif AppConfig.is_audio_file(file_path):
file_type = "Audio"
elif AppConfig.is_video_file(file_path):
file_type = "Video"
else:
file_type = "File"
uploaded_files_context += f"{i}. {file_type}: {file_name} (path: {file_path})\n"
return f"""You are Claude Sonnet 4, a helpful AI assistant with both native multimodal capabilities and access to various MCP tools.
YOUR NATIVE CAPABILITIES (No MCP tools needed):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code
WHEN TO USE MCP TOOLS:
- **Image Generation**: Creating new images from text prompts
- **Image Editing**: Modifying, enhancing, or transforming existing images
- **Audio Processing**: Transcribing audio, generating speech, audio enhancement
- **Video Processing**: Creating or editing videos
- **Specialized Analysis**: Tasks requiring specific models or APIs
UPLOADED FILES HANDLING:
{uploaded_files_context}
IMPORTANT - For uploaded images:
- **Image Description/Analysis**: Use your NATIVE vision capabilities - you can see and describe images directly
- **Image Editing/Enhancement**: Use MCP image processing tools
- **Image Generation**: Use MCP image generation tools
IMPORTANT - GRADIO MEDIA DISPLAY:
When MCP tools return media, end your response with "MEDIA_GENERATED: [URL]" where [URL] is the actual media URL.
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Available MCP servers: {list(self.mcp_client.servers.keys())}""" |