File size: 10,199 Bytes
82adb40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26cbcf
82adb40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f83b63
 
2e71e66
 
 
 
 
 
5f83b63
2f4b88f
 
 
 
 
2e71e66
 
 
 
 
 
5f83b63
2e71e66
 
 
 
 
 
 
 
 
5f83b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82adb40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f83b63
82adb40
5f83b63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from io import BytesIO
import requests
import gradio as gr
import requests
import torch
from tqdm import tqdm
from PIL import Image, ImageOps
from diffusers import StableDiffusionInpaintPipeline
from torchvision.transforms import ToPILImage
from utils import preprocess, prepare_mask_and_masked_image, recover_image, resize_and_crop

gr.close_all()
topil = ToPILImage()

pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    revision="fp16",
    torch_dtype=torch.float16,
    safety_checker=None,
)
pipe_inpaint = pipe_inpaint.to("cuda")

## Good params for editing that we used all over the paper --> decent quality and speed   
GUIDANCE_SCALE = 7.5
NUM_INFERENCE_STEPS = 100
DEFAULT_SEED = 1234

def pgd(X, targets, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
    X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
    pbar = tqdm(range(iters))
    for i in pbar:
        actual_step_size = step_size - (step_size - step_size / 100) / iters * i  
        X_adv.requires_grad_(True)

        loss = (model(X_adv).latent_dist.mean - targets).norm()
        pbar.set_description(f"Loss {loss.item():.5f} | step size: {actual_step_size:.4}")

        grad, = torch.autograd.grad(loss, [X_adv])
        
        X_adv = X_adv - grad.detach().sign() * actual_step_size
        X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
        X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
        X_adv.grad = None    
        
        if mask is not None:
            X_adv.data *= mask
            
    return X_adv

def get_target():
    print("***get_target***")
    target_url = 'https://www.rtings.com/images/test-materials/2015/204_Gray_Uniformity.png'
    response = requests.get(target_url)
    target_image = Image.open(BytesIO(response.content)).convert("RGB")
    target_image = target_image.resize((512, 512))
    return target_image

def immunize_fn(init_image, mask_image):
    with torch.autocast('cuda'):
        mask, X = prepare_mask_and_masked_image(init_image, mask_image)
        X = X.half().cuda()
        mask = mask.half().cuda()

        targets = pipe_inpaint.vae.encode(preprocess(get_target()).half().cuda()).latent_dist.mean

        adv_X = pgd(X, 
                    targets = targets,
                    model=pipe_inpaint.vae.encode, 
                    criterion=torch.nn.MSELoss(), 
                    clamp_min=-1, 
                    clamp_max=1,
                    eps=0.12, 
                    step_size=0.01, 
                    iters=200,
                    mask=1-mask
                   )

        adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
        
        adv_image = topil(adv_X[0]).convert("RGB")
        adv_image = recover_image(adv_image, init_image, mask_image, background=True)
        return adv_image        

def run(image, prompt, seed, immunize=False):
    if seed == '':
        seed = DEFAULT_SEED
    else:
        seed = int(seed)
    torch.manual_seed(seed)

    init_image = Image.fromarray(image['image'])
    init_image = resize_and_crop(init_image, (512,512))
    mask_image = ImageOps.invert(Image.fromarray(image['mask']).convert('RGB'))
    mask_image = resize_and_crop(mask_image, init_image.size)
    
    if immunize:
        immunized_image = immunize_fn(init_image, mask_image)
        
    image_edited = pipe_inpaint(prompt=prompt, 
                         image=init_image if not immunize else immunized_image, 
                         mask_image=mask_image, 
                         height = init_image.size[0],
                         width = init_image.size[1],
                         eta=1,
                         guidance_scale=GUIDANCE_SCALE,
                         num_inference_steps=NUM_INFERENCE_STEPS,
                        ).images[0]
        
    image_edited = recover_image(image_edited, init_image, mask_image)
    
    if immunize:
        return [(immunized_image, 'Immunized Image'), (image_edited, 'Edited After Immunization')]
    else:
        return [(image_edited, 'Edited Image')]

description='''<u>Official</u> demo of our paper: <br>
**Raising the Cost of Malicious AI-Powered Image Editing** <br>
*<a href='https://twitter.com/hadisalmanX' target='_blank'>Hadi Salman</a>, <a href='https://twitter.com/Alaa_Khaddaj' target='_blank'>Alaa Khaddaj</a>, 
<a href='https://twitter.com/gpoleclerc' target='_blank'>Guillaume Leclerc</a>, <a href=`https://twitter.com/andrew_ilyas` target='_blank'>Andrew Ilyas</a>, 
<a href='https://twitter.com/aleks_madry' target='_blank'>Aleksander Madry</><br>
MIT <a href=`https://arxiv.org/abs/2302.06588' target='_blank'>Paper</a>, <a href='https://gradientscience.org/photoguard/' target='_blank'>Blog post</a> 
'''


with gr.Blocks() as demo:
  gr.HTML(value="""<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Interactive Demo: Immunize your Photos Against AI-powered Malicious Manipulation </h1><br>
        """)
  gr.HTML(description)
  gr.HTML('''<a href="https://github.com/MadryLab/photoguard"><img src="https://badgen.net/badge/icon/GitHub?icon=github&label" alt="GitHub"></a>''')
  gr.HTML('''Below you can test our (encoder attack) immunization method for making images resistant to manipulation by Stable Diffusion. 
    This immunization process forces the model to perform unrealistic edits.<br>
    <b>This is a research project and is not production-ready. See Section 5 in our paper for discussion on its limitations.</b>
    ''')
  with gr.Accordion(label='Click for demo steps:', open=False):
    gr.HTML('''
    - Upload an image (or select from the below examples!)
    - Mask (using the drawing tool) the parts of the image you want to maintain unedited (e.g., faces of people)
    - Add a prompt to edit the image accordingly (see examples below)
    - Play with the seed and click submit until you get a realistic edit that you are happy with (or use default seeds below)

    Now let's immunize your image and try again! 
    - Click on the "immunize" button, then submit.
    - You will get the immunized image (which looks identical to the original one) and the edited image, which is now hopefully unrealistic!                   
    ''')

  with gr.Row():  
    with gr.Column():
        imgmask = gr.ImageMask(label='Drawing tool to mask regions you want to keep, e.g. faces')
        prompt = gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding')
        seed = gr.Textbox(label='Seed (Change to get different edits!)', placeholder=str(DEFAULT_SEED), visible=True)
        immunize = gr.Checkbox(label='Immunize', value=False)
        b1 = gr.Button('Submit')
    with gr.Column():
        genimages = gr.Gallery(label="Generated images", 
                   show_label=False, 
                   elem_id="gallery").style(grid=[1,2], height="auto")
  b1.click(run, [imgmask, prompt, seed, immunize], [genimages])

"""demo = gr.Interface(fn=run, 
                    inputs=[
                        gr.ImageMask(label='Drawing tool to mask regions you want to keep, e.g. faces'),
                        gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding'),
                        gr.Textbox(label='Seed (Change to get different edits!)', placeholder=str(DEFAULT_SEED), visible=True),
                        gr.Checkbox(label='Immunize', value=False),
                    ], 
                    cache_examples=False,
                    outputs=[gr.Gallery(
                            label="Generated images", 
                            show_label=False, 
                            elem_id="gallery").style(grid=[1,2], height="auto")],
                    examples=[
                    ['./images/hadi_and_trevor.jpg', 'man attending a wedding', '329357'],
                    ['./images/trevor_2.jpg', 'two men in prison', '329357'],
                    ['./images/elon_2.jpg', 'man in a metro station', '214213'],
                    ],
                    examples_per_page=20,
                    allow_flagging='never',
                    title="Interactive Demo: Immunize your Photos Against AI-powered Malicious Manipulation",
                    description='''<u>Official</u> demo of our paper: <br>
                    **Raising the Cost of Malicious AI-Powered Image Editing** <br>
                    *[Hadi Salman](https://twitter.com/hadisalmanX)\*, [Alaa Khaddaj](https://twitter.com/Alaa_Khaddaj)\*, [Guillaume Leclerc](https://twitter.com/gpoleclerc)\*, [Andrew Ilyas](https://twitter.com/andrew_ilyas), [Aleksander Madry](https://twitter.com/aleks_madry)* <br>
                    MIT &nbsp;&nbsp;[Paper](https://arxiv.org/abs/2302.06588) 
                    &nbsp;&nbsp;[Blog post](https://gradientscience.org/photoguard/) 
                    &nbsp;&nbsp;[![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/MadryLab/photoguard)
                    <br />
                    Below you can test our (encoder attack) immunization method for making images resistant to manipulation by Stable Diffusion. This immunization process forces the model to perform unrealistic edits.
                    <br />
**This is a research project and is not production-ready. See Section 5 in our paper for discussion on its limitations.**
<details closed>
<summary>Click for demo steps:</summary>

+ Upload an image (or select from the below examples!)
+ Mask (using the drawing tool) the parts of the image you want to maintain unedited (e.g., faces of people)
+ Add a prompt to edit the image accordingly (see examples below)
+ Play with the seed and click submit until you get a realistic edit that you are happy with (or use default seeds below)

Now let's immunize your image and try again! 
+ Click on the "immunize" button, then submit.
+ You will get the immunized image (which looks identical to the original one) and the edited image, which is now hopefully unrealistic!                   
</details>
                    ''',
                   )
"""
# demo.launch()
demo.launch() #server_name='0.0.0.0', share=False, server_port=7860, inline=False)