Spaces:
Running
on
L4
Running
on
L4
File size: 6,945 Bytes
f3742f4 5dbd673 f3742f4 6f44fea 77dcd9a f3742f4 e8a5fba 7805dc1 f3742f4 7805dc1 e8a5fba 7805dc1 f3742f4 c7c0f6a 8d5c635 c7c0f6a 8d5c635 c7c0f6a 8d5c635 f3742f4 88a08d8 f3742f4 9e82664 f3742f4 1ddb035 f3742f4 1ddb035 88a08d8 f3742f4 9dbc715 f3742f4 9dbc715 f3742f4 9dbc715 f3742f4 8d5c635 f3742f4 06ed31f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
#!/usr/bin/env python
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = """
# DALL•E 3 XL v2
"""
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-Final",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
pipe.set_adapters("dalle")
pipe.to("cuda")
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
"""
Generate an image from a text prompt using a fine-tuned Stable Diffusion XL model.
This function uses the Fluently-XL-Final model with a LoRA adapter (dalle-3-xl-v2)
to generate high-quality images based on the input prompt. It allows advanced options
such as negative prompts, seed control, image resolution, and classifier-free guidance scale.
Args:
prompt: A positive text prompt describing the desired image.
negative_prompt: A prompt specifying what should be avoided in the image (optional).
use_negative_prompt: Whether to use the negative prompt or ignore it.
seed: Seed value for reproducibility. Set to 0 if unused or randomize_seed is True.
width: Width of the output image (in pixels).
height: Height of the output image (in pixels).
guidance_scale: Classifier-free guidance scale to control prompt adherence.
randomize_seed: If True, a random seed will be used.
progress: Gradio progress tracker (automatically handled by Gradio UI).
Returns:
A tuple containing:
- A list with one file path to the saved generated image.
- The seed used for generation (useful for reproducibility).
"""
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"neon holography crystal cat",
"a cat eating a piece of cheese",
"an astronaut riding a horse in space",
"a cartoon of a boy playing with a tiger",
"a cute robot artist painting on an easel, concept art",
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]
css1 = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
#api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(mcp_server=True) |