File size: 15,233 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from typing import List, Optional, Tuple
import logging

import torch
from torch import nn

import transformers
from einops import rearrange

from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
from transformers.models.opt.modeling_opt import _make_causal_mask, _expand_mask


def _prepare_decoder_attention_mask_original(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
    # create causal mask
    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
    combined_attention_mask = None
    if input_shape[-1] > 1:
        combined_attention_mask = _make_causal_mask(
            input_shape,
            inputs_embeds.dtype,
            device=inputs_embeds.device,
            past_key_values_length=past_key_values_length,
        )

    if attention_mask is not None:
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
            inputs_embeds.device
        )
        combined_attention_mask = (
            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
        )

    return combined_attention_mask

def forward_original(
    self,
    hidden_states: torch.Tensor,
    key_value_states: Optional[torch.Tensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    attention_mask: Optional[torch.Tensor] = None,
    layer_head_mask: Optional[torch.Tensor] = None,
    output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    """Input shape: Batch x Time x Channel"""
    # if key_value_states are provided this layer is used as a cross-attention layer
    # for the decoder
    is_cross_attention = key_value_states is not None

    bsz, tgt_len, _ = hidden_states.size()

    # get query proj
    query_states = self.q_proj(hidden_states) * self.scaling
    # get key, value proj
    if is_cross_attention and past_key_value is not None:
        # reuse k,v, cross_attentions
        key_states = past_key_value[0]
        value_states = past_key_value[1]
    elif is_cross_attention:
        # cross_attentions
        key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
        value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
    elif past_key_value is not None:
        # reuse k, v, self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
        value_states = torch.cat([past_key_value[1], value_states], dim=2)
    else:
        # self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

    if self.is_decoder:
        # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
        # Further calls to cross_attention layer can then reuse all cross-attention
        # key/value_states (first "if" case)
        # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
        # all previous decoder key/value_states. Further calls to uni-directional self-attention
        # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
        # if encoder bi-directional self-attention `past_key_value` is always `None`
        past_key_value = (key_states, value_states)

    proj_shape = (bsz * self.num_heads, -1, self.head_dim)
    query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
    key_states = key_states.view(*proj_shape)
    value_states = value_states.view(*proj_shape)

    src_len = key_states.size(1)
    attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

    if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
        raise ValueError(
            f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
            f" {attn_weights.size()}"
        )

    if attention_mask is not None:
        if attention_mask.size() != (bsz, 1, tgt_len, src_len):
            raise ValueError(
                f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
            )
        attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
        attn_weights = torch.max(
            attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
        )
        attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
    if attn_weights.dtype == torch.float16:
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
    else:
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

    if layer_head_mask is not None:
        if layer_head_mask.size() != (self.num_heads,):
            raise ValueError(
                f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                f" {layer_head_mask.size()}"
            )
        attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
        attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

    if output_attentions:
        # this operation is a bit awkward, but it's required to
        # make sure that attn_weights keeps its gradient.
        # In order to do so, attn_weights have to be reshaped
        # twice and have to be reused in the following
        attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
        attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
    else:
        attn_weights_reshaped = None

    attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

    attn_output = torch.bmm(attn_probs, value_states)

    if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
        raise ValueError(
            f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
            f" {attn_output.size()}"
        )

    attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
    attn_output = attn_output.transpose(1, 2)

    # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
    # partitioned aross GPUs when using tensor-parallelism.
    attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

    attn_output = self.out_proj(attn_output)

    return attn_output, attn_weights_reshaped, past_key_value


def forward(
    self,
    hidden_states: torch.Tensor,
    key_value_states: Optional[torch.Tensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    attention_mask: Optional[torch.Tensor] = None,
    layer_head_mask: Optional[torch.Tensor] = None,
    output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    """Input shape: Batch x Time x Channel"""

    # if key_value_states are provided this layer is used as a cross-attention layer
    # for the decoder
    is_cross_attention = key_value_states is not None
    assert not is_cross_attention, "Cross attention is not supported for flash attention"
    assert past_key_value is None, "past_key_value is not None is not supported for flash attention"
    assert not output_attentions, "output_attentions is not supported for flash attention"

    bsz, tgt_len, _ = hidden_states.size()

    # get query proj
    query_states = self.q_proj(hidden_states) * self.scaling
    # get key, value proj

    if past_key_value is not None:
        # reuse k, v, self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
        value_states = torch.cat([past_key_value[1], value_states], dim=2)
    else:
        # self_attention
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

    if self.is_decoder:
        # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
        # Further calls to cross_attention layer can then reuse all cross-attention
        # key/value_states (first "if" case)
        # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
        # all previous decoder key/value_states. Further calls to uni-directional self-attention
        # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
        # if encoder bi-directional self-attention `past_key_value` is always `None`
        past_key_value = (key_states, value_states)

    proj_shape = (bsz * self.num_heads, -1, self.head_dim)
    query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
    key_states = key_states.view(*proj_shape)
    value_states = value_states.view(*proj_shape)

    ## for flash attention
    flash_shape = (bsz, self.num_heads, tgt_len, self.head_dim)
    query_states = query_states.view(*flash_shape)
    key_states = key_states.view(*flash_shape)
    value_states = value_states.view(*flash_shape)
    qkv = torch.stack([query_states, key_states, value_states], dim=2) # shape = [bsz, num_heads, 3, tgt_len, head_dim]
    qkv = qkv.transpose(1, 3)  # [bsz, tgt_len, 3, num_heads, head_dim]

    key_padding_mask = attention_mask


    assert key_padding_mask is not None
    x = rearrange(qkv, "b s three h d -> b s (three h d)")
    x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
    x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=self.num_heads)
    output_unpad = flash_attn_varlen_qkvpacked_func(
        x_unpad, cu_seqlens, max_s, self.dropout if self.training else 0.0,
        softmax_scale=1, causal=True, return_attn_probs=False
    )

    output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
                                indices, bsz, tgt_len),
                    'b s (h d) -> b s h d', h=self.num_heads)

    attn_output = self.out_proj(rearrange(output, "b s h d -> b s (h d)"))
    return attn_output, None, past_key_value


# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
    self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
    # [bsz, seq_len]
    return attention_mask


def replace_opt_attn_with_flash_attn():
    cuda_major, cuda_minor = torch.cuda.get_device_capability()
    if cuda_major < 8:
        logging.warning(
            "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
            "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
        )
    transformers.models.opt.modeling_opt.OPTDecoder._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
    transformers.models.opt.modeling_opt.OPTAttention.forward = forward

def replace_opt_attn_with_original_attn():
    transformers.models.opt.modeling_opt.OPTDecoder._prepare_decoder_attention_mask = _prepare_decoder_attention_mask_original
    transformers.models.opt.modeling_opt.OPTAttention.forward = forward_original

if __name__ == '__main__':
    ## generate tests to verify the equivalence between forward_original and forward
    import torch.nn as nn
    import math
    class FakeNN(nn.Module):
        def __init__(self, ):
            super().__init__()
            self.scaling = 1 / math.sqrt(2048)
            if False:
                self.q_proj = nn.Linear(2048, 2048)
                self.k_proj = nn.Linear(2048, 2048)
                self.v_proj = nn.Linear(2048, 2048)
                self.out_proj = nn.Linear(2048, 2048)
            else:
                self.q_proj = nn.Identity()
                self.k_proj = nn.Identity()
                self.v_proj = nn.Identity()
                self.out_proj = nn.Identity()

            self.is_decoder = True
            self.num_heads = 2
            self.head_dim = 128
            self.embed_dim = 256
            self.dropout = 0

        def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
            # create causal mask
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            combined_attention_mask = None
            if input_shape[-1] > 1:
                combined_attention_mask = _make_causal_mask(
                    input_shape,
                    inputs_embeds.dtype,
                    device=inputs_embeds.device,
                    past_key_values_length=past_key_values_length,
                )

            if attention_mask is not None:
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                    inputs_embeds.device
                )
                combined_attention_mask = (
                    expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
                )

            return combined_attention_mask
        
        def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
            return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
        
    fakenn = FakeNN().to(torch.bfloat16).to('cuda:0')

    t_len = 3
    fake_input = torch.randn(2, t_len, fakenn.embed_dim).to(torch.bfloat16).to('cuda:0')
    if False:
        fake_lens = torch.randint(0, t_len, (2,)).to('cuda:0')
        fake_lens = torch.LongTensor([3, 2]).to('cuda:0')
        # fake_lens = torch.ones((2,)).to('cuda:0') * 3
        fake_mask = torch.arange(t_len).unsqueeze(0).to('cuda:0') < fake_lens.unsqueeze(1)
    else:
        fake_mask = torch.randint(0, t_len, (2, t_len)).bool().to('cuda:0')

    fake_mask2 = fakenn._prepare_decoder_attention_mask(fake_mask, (2,t_len), fake_input, 0)
    attn_output0, _, _ = forward_original(fakenn, fake_input, None, None, fake_mask2, None, False)
    attn_output1, _, _ = forward(fakenn, fake_input, None, None, fake_mask, None, False) # shape = [2, 3, 256]
    attn_output0 = attn_output0 * fake_mask.unsqueeze(-1)
    
    print(torch.isclose(attn_output0, attn_output1).all()) 
    print(attn_output0.shape, attn_output1.shape)
    difference = (attn_output0- attn_output1).abs()
    print(difference)
    print(difference.sum())