Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,4 @@
|
|
1 |
-
'''
|
2 |
-
import gradio as gr
|
3 |
-
from openai import OpenAI
|
4 |
-
import os
|
5 |
-
import time
|
6 |
-
|
7 |
-
def predict(message, history, system_prompt, model, max_tokens, temperature, top_p):
|
8 |
-
|
9 |
-
# Initialize the OpenAI client
|
10 |
-
client = OpenAI(
|
11 |
-
api_key=os.environ.get("API_TOKEN"),
|
12 |
-
)
|
13 |
-
|
14 |
-
# Start with the system prompt
|
15 |
-
messages = [{"role": "system", "content": system_prompt}]
|
16 |
-
|
17 |
-
# Add the conversation history
|
18 |
-
messages.extend(history if history else [])
|
19 |
-
|
20 |
-
# Add the current user message
|
21 |
-
messages.append({"role": "user", "content": message})
|
22 |
|
23 |
-
# Record the start time
|
24 |
-
start_time = time.time()
|
25 |
-
|
26 |
-
# Streaming response
|
27 |
-
response = client.chat.completions.create(
|
28 |
-
model=model,
|
29 |
-
messages=messages,
|
30 |
-
max_tokens=max_tokens,
|
31 |
-
temperature=temperature,
|
32 |
-
top_p=top_p,
|
33 |
-
stop=None,
|
34 |
-
stream=True
|
35 |
-
)
|
36 |
-
|
37 |
-
full_message = ""
|
38 |
-
first_chunk_time = None
|
39 |
-
last_yield_time = None
|
40 |
-
|
41 |
-
for chunk in response:
|
42 |
-
if chunk.choices and chunk.choices[0].delta.content:
|
43 |
-
if first_chunk_time is None:
|
44 |
-
first_chunk_time = time.time() - start_time # Record time for the first chunk
|
45 |
-
|
46 |
-
full_message += chunk.choices[0].delta.content
|
47 |
-
current_time = time.time()
|
48 |
-
chunk_time = current_time - start_time # calculate the time delay of the chunk
|
49 |
-
print(f"Message received {chunk_time:.2f} seconds after request: {chunk.choices[0].delta.content}")
|
50 |
-
|
51 |
-
if last_yield_time is None or (current_time - last_yield_time >= 0.25):
|
52 |
-
yield full_message
|
53 |
-
last_yield_time = current_time
|
54 |
-
|
55 |
-
# Ensure to yield any remaining message that didn't meet the time threshold
|
56 |
-
if full_message:
|
57 |
-
total_time = time.time() - start_time
|
58 |
-
# Append timing information to the response message
|
59 |
-
full_message += f" (First Chunk: {first_chunk_time:.2f}s, Total: {total_time:.2f}s)"
|
60 |
-
yield full_message
|
61 |
-
|
62 |
-
gr.ChatInterface(
|
63 |
-
fn=predict,
|
64 |
-
type="messages",
|
65 |
-
#save_history=True,
|
66 |
-
#editable=True,
|
67 |
-
additional_inputs=[
|
68 |
-
gr.Textbox("You are a helpful AI assistant.", label="System Prompt"),
|
69 |
-
gr.Dropdown(["gpt-4o", "gpt-4o-mini"], label="Model"),
|
70 |
-
gr.Slider(800, 4000, value=2000, label="Max Token"),
|
71 |
-
gr.Slider(0, 1, value=0.7, label="Temperature"),
|
72 |
-
gr.Slider(0, 1, value=0.95, label="Top P"),
|
73 |
-
],
|
74 |
-
css="footer{display:none !important}"
|
75 |
-
).launch()
|
76 |
-
'''
|
77 |
|
78 |
import gradio as gr
|
79 |
from openai import OpenAI
|
@@ -134,17 +59,21 @@ def predict(user_input, history, subject, model, max_tokens, temperature, top_p)
|
|
134 |
full_message += f" (First Chunk: {first_chunk_time:.2f}s, Total: {total_time:.2f}s)"
|
135 |
yield full_message
|
136 |
|
137 |
-
# Function to generate image based on prompt
|
138 |
def generate_image(prompt, size="256x256"):
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# Gradio interface
|
150 |
with gr.Blocks(css="footer{display:none !important}") as demo:
|
@@ -170,9 +99,9 @@ with gr.Blocks(css="footer{display:none !important}") as demo:
|
|
170 |
history.append([message, full_response])
|
171 |
|
172 |
# Generate image based on the latest assistant response
|
173 |
-
|
174 |
|
175 |
-
return history, ""
|
176 |
|
177 |
user_input.submit(
|
178 |
wrapped_predict,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
from openai import OpenAI
|
|
|
59 |
full_message += f" (First Chunk: {first_chunk_time:.2f}s, Total: {total_time:.2f}s)"
|
60 |
yield full_message
|
61 |
|
|
|
62 |
def generate_image(prompt, size="256x256"):
|
63 |
+
try:
|
64 |
+
response = client.images.generate(
|
65 |
+
model="dall-e-3", # or "dall-e-2"
|
66 |
+
prompt=prompt,
|
67 |
+
size=size,
|
68 |
+
quality="standard",
|
69 |
+
n=1
|
70 |
+
)
|
71 |
+
image_url = response.data[0].url
|
72 |
+
image_response = requests.get(image_url)
|
73 |
+
return Image.open(BytesIO(image_response.content))
|
74 |
+
except Exception as e:
|
75 |
+
print("Image generation error:", e)
|
76 |
+
return None
|
77 |
|
78 |
# Gradio interface
|
79 |
with gr.Blocks(css="footer{display:none !important}") as demo:
|
|
|
99 |
history.append([message, full_response])
|
100 |
|
101 |
# Generate image based on the latest assistant response
|
102 |
+
image = generate_image(text_response)
|
103 |
|
104 |
+
return history, "", image
|
105 |
|
106 |
user_input.submit(
|
107 |
wrapped_predict,
|