hackton-aI / app.py
youzhang's picture
Update app.py
a1c4cdd verified
raw
history blame
7.06 kB
'''
import gradio as gr
from openai import OpenAI
import os
import time
def predict(message, history, system_prompt, model, max_tokens, temperature, top_p):
# Initialize the OpenAI client
client = OpenAI(
api_key=os.environ.get("API_TOKEN"),
)
# Start with the system prompt
messages = [{"role": "system", "content": system_prompt}]
# Add the conversation history
messages.extend(history if history else [])
# Add the current user message
messages.append({"role": "user", "content": message})
# Record the start time
start_time = time.time()
# Streaming response
response = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stop=None,
stream=True
)
full_message = ""
first_chunk_time = None
last_yield_time = None
for chunk in response:
if chunk.choices and chunk.choices[0].delta.content:
if first_chunk_time is None:
first_chunk_time = time.time() - start_time # Record time for the first chunk
full_message += chunk.choices[0].delta.content
current_time = time.time()
chunk_time = current_time - start_time # calculate the time delay of the chunk
print(f"Message received {chunk_time:.2f} seconds after request: {chunk.choices[0].delta.content}")
if last_yield_time is None or (current_time - last_yield_time >= 0.25):
yield full_message
last_yield_time = current_time
# Ensure to yield any remaining message that didn't meet the time threshold
if full_message:
total_time = time.time() - start_time
# Append timing information to the response message
full_message += f" (First Chunk: {first_chunk_time:.2f}s, Total: {total_time:.2f}s)"
yield full_message
gr.ChatInterface(
fn=predict,
type="messages",
#save_history=True,
#editable=True,
additional_inputs=[
gr.Textbox("You are a helpful AI assistant.", label="System Prompt"),
gr.Dropdown(["gpt-4o", "gpt-4o-mini"], label="Model"),
gr.Slider(800, 4000, value=2000, label="Max Token"),
gr.Slider(0, 1, value=0.7, label="Temperature"),
gr.Slider(0, 1, value=0.95, label="Top P"),
],
css="footer{display:none !important}"
).launch()
'''
import gradio as gr
from openai import OpenAI
import os
import time
from PIL import Image
import requests
from io import BytesIO
# Prompts for each subject
prompts = {
"History": "You are a professional history tutor. You explain historical events clearly and vividly. In addition to answering questions, you analyze potential difficulties the user may face and generate a thoughtful follow-up question.",
"Writing": "You are a writing coach who helps users improve their writing skills. You offer revision suggestions, identify issues in expression, and generate a thought-provoking follow-up question.",
"Computer Science": "You are a computer science tutor skilled at explaining algorithms, programming concepts, and system architecture. You assess user understanding and suggest a further exploratory question.",
"Science": "You are a science tutor helping students understand concepts in physics, chemistry, or biology. You explain scientific principles and guide the student to think more deeply with a follow-up question."
}
# Shared prediction generator
def predict(user_input, history, subject, model, max_tokens, temperature, top_p):
system_prompt = prompts[subject]
client = OpenAI(api_key=os.environ.get("API_TOKEN"))
# Convert chat history into OpenAI format
messages = [{"role": "system", "content": system_prompt}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_input})
start_time = time.time()
response = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
)
full_message = ""
first_chunk_time = None
last_yield_time = None
for chunk in response:
content = chunk.choices[0].delta.content if chunk.choices and chunk.choices[0].delta.content else None
if content:
if first_chunk_time is None:
first_chunk_time = time.time() - start_time
full_message += content
current_time = time.time()
if last_yield_time is None or (current_time - last_yield_time >= 0.25):
yield full_message
last_yield_time = current_time
if full_message:
total_time = time.time() - start_time
full_message += f" (First Chunk: {first_chunk_time:.2f}s, Total: {total_time:.2f}s)"
yield full_message
# Function to generate image based on prompt
def generate_image(prompt, size="256x256"):
response = openai.Image.create(
prompt=prompt,
n=1,
size=size
)
image_url = response['data'][0]['url']
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content))
return image
# Gradio interface
with gr.Blocks(css="footer{display:none !important}") as demo:
gr.Markdown("# 📚 Educational Learning Assistant")
with gr.Tabs():
for subject in prompts.keys():
with gr.Tab(subject):
chatbot = gr.Chatbot(label=f"{subject} Chat")
user_input = gr.Textbox(label="Your Question")
with gr.Row():
model = gr.Dropdown(["gpt-4o", "gpt-4o-mini"], value="gpt-4o", label="Model")
max_tokens = gr.Slider(800, 4000, value=2000, label="Max Tokens")
temperature = gr.Slider(0, 1, value=0.7, label="Temperature")
top_p = gr.Slider(0, 1, value=0.95, label="Top P")
state = gr.State([])
# 👇 Use subject=subject to freeze its value
def wrapped_predict(message, history, model, max_tokens, temperature, top_p, subject=subject):
full_response = ""
for chunk in predict(message, history, subject, model, max_tokens, temperature, top_p):
full_response = chunk
history.append([message, full_response])
# Generate image based on the latest assistant response
image = generate_image(text_response)
return history, "",image
user_input.submit(
wrapped_predict,
inputs=[user_input, state, model, max_tokens, temperature, top_p],
outputs=[chatbot, user_input]
)
demo.launch()