youssef227's picture
Update app.py
67b99f2 verified
raw
history blame
1.34 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import LoraConfig, get_peft_model
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("youssef227/llama-3-8b-Instruct-bnb-telcom-3")
print("step 1 ")
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b-Instruct-bnb-4bit")
print("step 2")
model = PeftModel.from_pretrained(base_model, "youssef227/llama-3-8b-Instruct-bnb-telcom-3")
print("step 3")
# Load the tokenizer and model
# print("step 1 ")
# tokenizer = AutoTokenizer.from_pretrained("youssef227/llama-3-8b-Instruct-bnb-telcom-3")
# print("step 2 ")
# model = AutoModelForCausalLM.from_pretrained("youssef227/llama-3-8b-Instruct-bnb-telcom-3")
def generator(text):
inputs = tokenizer(
[
alpaca_prompt.format(
f" {context}ุงู†ุช ู…ู…ุซู„ ุฎุฏู…ุฉ ุงู„ุนู…ู„ุงุก ู„ุฏู‰ ุดุฑูƒุฉ ููˆุฏุงููˆู†.ูˆ ุฏูŠ ู…ุนู„ูˆู…ุงุช ู…ู…ูƒู† ุชููŠุฏูƒ", # instruction
text, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
return tokenizer.batch_decode(outputs)
text = st.text_area('enter some text!')
if text:
out = generator(text)
st.json(out)