import os import time import gradio as gr import numpy as np import requests import spaces import supervision as sv import torch from PIL import Image from tqdm import tqdm from transformers import AutoModelForObjectDetection, AutoProcessor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365") model = AutoModelForObjectDetection.from_pretrained( "PekingU/rtdetr_r50vd_coco_o365", disable_custom_kernels=False, torch_dtype=torch.float16, ).to(device) model_compiled = torch.compile( model, mode="reduce-overhead", ) @spaces.GPU def init_compiled_model(): print("Compiling model...") start_time = time.time() with torch.no_grad(): for _ in range(10): outputs = model_compiled(**inputs) _ = outputs[0].cpu() print(f"Model compiled in {time.time() - start_time:.2f} seconds.") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt").to(device).to(torch.float16) init_compiled_model() BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() MASK_ANNOTATOR = sv.MaskAnnotator() LABEL_ANNOTATOR = sv.LabelAnnotator() TRACKER = sv.ByteTrack() def calculate_end_frame_index(source_video_path): video_info = sv.VideoInfo.from_video_path(source_video_path) return min(video_info.total_frames, video_info.fps * 5) def annotate_image(input_image, detections, labels) -> np.ndarray: output_image = MASK_ANNOTATOR.annotate(input_image, detections) output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections) output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) return output_image @spaces.GPU def process_video( input_video, confidence_threshold, progress=gr.Progress(track_tqdm=True), ): video_info = sv.VideoInfo.from_video_path(input_video) total = calculate_end_frame_index(input_video) frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total) result_file_name = "output.mp4" result_file_path = os.path.join(os.getcwd(), result_file_name) all_fps = [] with sv.VideoSink(result_file_path, video_info=video_info) as sink: for _ in tqdm(range(total), desc="Processing video.."): try: frame = next(frame_generator) except StopIteration: break results, fps = query(frame, confidence_threshold) all_fps.append(fps) final_labels = [] detections = [] detections = sv.Detections.from_transformers(results[0]) detections = TRACKER.update_with_detections(detections) for label in detections.class_id.tolist(): final_labels.append(model.config.id2label[label]) frame = annotate_image( input_image=frame, detections=detections, labels=final_labels, ) sink.write_frame(frame) avg_fps = np.mean(all_fps) return result_file_path, gr.Markdown( f'

Model inference FPS: {avg_fps:.2f}

', visible=True, ) def query(frame, confidence_threshold): image = Image.fromarray(frame) inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) with torch.no_grad(): start = time.time() outputs = model_compiled(**inputs) outputs[0].cpu() fps = 1 / (time.time() - start) target_sizes = torch.tensor([frame.shape[:2]]).to(device) results = processor.post_process_object_detection( outputs=outputs, threshold=confidence_threshold, target_sizes=target_sizes, ) return results, fps with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("## Real Time Object Detection with compiled RT-DETR") gr.Markdown( """ This is a demo for real-time object detection using RT-DETR compiled.
It runs on ZeroGPU which captures GPU every first time you infer.
This combined with video processing time means that the demo inference time is slower than the model's actual inference time.
The actual model average inference FPS is displayed under the processed video after inference. """ ) gr.Markdown( "Simply upload a video! You can also play with confidence threshold or try the examples below. 👇" ) with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") with gr.Column(): output_video = gr.Video(label="Output Video (5s max)") actual_fps = gr.Markdown("", visible=False) with gr.Row(): conf = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.3, step=0.05, ) with gr.Row(): submit = gr.Button(variant="primary") example = gr.Examples( examples=[ ["./football.mp4", 0.3, 640], ["./cat.mp4", 0.3, 640], ["./safari2.mp4", 0.3, 640], ], inputs=[input_video, conf], outputs=output_video, ) submit.click( fn=process_video, inputs=[input_video, conf], outputs=[output_video, actual_fps], ) if __name__ == "__main__": demo.launch(show_error=True)