Spaces:
Running
Running
| # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION is strictly prohibited. | |
| """Perceptual Path Length (PPL) from the paper "A Style-Based Generator | |
| Architecture for Generative Adversarial Networks". Matches the original | |
| implementation by Karras et al. at | |
| https://github.com/NVlabs/stylegan/blob/master/metrics/perceptual_path_length.py""" | |
| import copy | |
| import numpy as np | |
| import torch | |
| import dnnlib | |
| from . import metric_utils | |
| #---------------------------------------------------------------------------- | |
| # Spherical interpolation of a batch of vectors. | |
| def slerp(a, b, t): | |
| a = a / a.norm(dim=-1, keepdim=True) | |
| b = b / b.norm(dim=-1, keepdim=True) | |
| d = (a * b).sum(dim=-1, keepdim=True) | |
| p = t * torch.acos(d) | |
| c = b - d * a | |
| c = c / c.norm(dim=-1, keepdim=True) | |
| d = a * torch.cos(p) + c * torch.sin(p) | |
| d = d / d.norm(dim=-1, keepdim=True) | |
| return d | |
| #---------------------------------------------------------------------------- | |
| class PPLSampler(torch.nn.Module): | |
| def __init__(self, G, G_kwargs, epsilon, space, sampling, crop, vgg16): | |
| assert space in ['z', 'w'] | |
| assert sampling in ['full', 'end'] | |
| super().__init__() | |
| self.G = copy.deepcopy(G) | |
| self.G_kwargs = G_kwargs | |
| self.epsilon = epsilon | |
| self.space = space | |
| self.sampling = sampling | |
| self.crop = crop | |
| self.vgg16 = copy.deepcopy(vgg16) | |
| def forward(self, c): | |
| # Generate random latents and interpolation t-values. | |
| t = torch.rand([c.shape[0]], device=c.device) * (1 if self.sampling == 'full' else 0) | |
| z0, z1 = torch.randn([c.shape[0] * 2, self.G.z_dim], device=c.device).chunk(2) | |
| # Interpolate in W or Z. | |
| if self.space == 'w': | |
| w0, w1 = self.G.mapping(z=torch.cat([z0,z1]), c=torch.cat([c,c])).chunk(2) | |
| wt0 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2)) | |
| wt1 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2) + self.epsilon) | |
| else: # space == 'z' | |
| zt0 = slerp(z0, z1, t.unsqueeze(1)) | |
| zt1 = slerp(z0, z1, t.unsqueeze(1) + self.epsilon) | |
| wt0, wt1 = self.G.mapping(z=torch.cat([zt0,zt1]), c=torch.cat([c,c])).chunk(2) | |
| # Randomize noise buffers. | |
| for name, buf in self.G.named_buffers(): | |
| if name.endswith('.noise_const'): | |
| buf.copy_(torch.randn_like(buf)) | |
| # Generate images. | |
| img = self.G.synthesis(ws=torch.cat([wt0,wt1]), noise_mode='const', force_fp32=True, **self.G_kwargs) | |
| # Center crop. | |
| if self.crop: | |
| assert img.shape[2] == img.shape[3] | |
| c = img.shape[2] // 8 | |
| img = img[:, :, c*3 : c*7, c*2 : c*6] | |
| # Downsample to 256x256. | |
| factor = self.G.img_resolution // 256 | |
| if factor > 1: | |
| img = img.reshape([-1, img.shape[1], img.shape[2] // factor, factor, img.shape[3] // factor, factor]).mean([3, 5]) | |
| # Scale dynamic range from [-1,1] to [0,255]. | |
| img = (img + 1) * (255 / 2) | |
| if self.G.img_channels == 1: | |
| img = img.repeat([1, 3, 1, 1]) | |
| # Evaluate differential LPIPS. | |
| lpips_t0, lpips_t1 = self.vgg16(img, resize_images=False, return_lpips=True).chunk(2) | |
| dist = (lpips_t0 - lpips_t1).square().sum(1) / self.epsilon ** 2 | |
| return dist | |
| #---------------------------------------------------------------------------- | |
| def compute_ppl(opts, num_samples, epsilon, space, sampling, crop, batch_size, jit=False): | |
| dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs) | |
| vgg16_url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt' | |
| vgg16 = metric_utils.get_feature_detector(vgg16_url, num_gpus=opts.num_gpus, rank=opts.rank, verbose=opts.progress.verbose) | |
| # Setup sampler. | |
| sampler = PPLSampler(G=opts.G, G_kwargs=opts.G_kwargs, epsilon=epsilon, space=space, sampling=sampling, crop=crop, vgg16=vgg16) | |
| sampler.eval().requires_grad_(False).to(opts.device) | |
| if jit: | |
| c = torch.zeros([batch_size, opts.G.c_dim], device=opts.device) | |
| sampler = torch.jit.trace(sampler, [c], check_trace=False) | |
| # Sampling loop. | |
| dist = [] | |
| progress = opts.progress.sub(tag='ppl sampling', num_items=num_samples) | |
| for batch_start in range(0, num_samples, batch_size * opts.num_gpus): | |
| progress.update(batch_start) | |
| c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_size)] | |
| c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device) | |
| x = sampler(c) | |
| for src in range(opts.num_gpus): | |
| y = x.clone() | |
| if opts.num_gpus > 1: | |
| torch.distributed.broadcast(y, src=src) | |
| dist.append(y) | |
| progress.update(num_samples) | |
| # Compute PPL. | |
| if opts.rank != 0: | |
| return float('nan') | |
| dist = torch.cat(dist)[:num_samples].cpu().numpy() | |
| lo = np.percentile(dist, 1, interpolation='lower') | |
| hi = np.percentile(dist, 99, interpolation='higher') | |
| ppl = np.extract(np.logical_and(dist >= lo, dist <= hi), dist).mean() | |
| return float(ppl) | |
| #---------------------------------------------------------------------------- | |