Spaces:
Paused
Paused
yjwtheonly
commited on
Commit
·
f402b50
1
Parent(s):
ab18435
modifications
Browse files
DiseaseAgnostic/edge_to_abstract.py
CHANGED
|
@@ -162,51 +162,12 @@ if args.mode == 'sentence':
|
|
| 162 |
|
| 163 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}_sentence.json', 'w') as fl:
|
| 164 |
json.dump(single_sentence, fl, indent=4)
|
| 165 |
-
|
| 166 |
-
# fl.write('\n'.join(test_text))
|
| 167 |
-
# with open('generate_abstract/dp.txt', 'w') as fl:
|
| 168 |
-
# fl.write('\n'.join(test_dp))
|
| 169 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_path.json', 'w') as fl:
|
| 170 |
fl.write('\n'.join(test_dp))
|
| 171 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_temp.json', 'w') as fl:
|
| 172 |
fl.write('\n'.join(test_text))
|
| 173 |
|
| 174 |
-
elif args.mode == 'biogpt':
|
| 175 |
-
pass
|
| 176 |
-
# from biogpt_generate import GPT_eval
|
| 177 |
-
# import spacy
|
| 178 |
-
|
| 179 |
-
# model = GPT_eval(args.seed)
|
| 180 |
-
|
| 181 |
-
# nlp = spacy.load("en_core_web_sm")
|
| 182 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_sentence.json', 'r') as fl:
|
| 183 |
-
# data = json.load(fl)
|
| 184 |
-
|
| 185 |
-
# KK = []
|
| 186 |
-
# input = []
|
| 187 |
-
# for i,(k, v) in enumerate(data.items()):
|
| 188 |
-
# KK.append(k)
|
| 189 |
-
# input.append(v)
|
| 190 |
-
# output = model.eval(input)
|
| 191 |
-
|
| 192 |
-
# ret = {}
|
| 193 |
-
# for i, o in enumerate(output):
|
| 194 |
-
|
| 195 |
-
# o = o.replace('<|abstract|>', '')
|
| 196 |
-
# doc = nlp(o)
|
| 197 |
-
# sen_list = []
|
| 198 |
-
# sen_set = set()
|
| 199 |
-
# for sen in doc.sents:
|
| 200 |
-
# txt = sen.text
|
| 201 |
-
# if not (txt.lower() in sen_set):
|
| 202 |
-
# sen_set.add(txt.lower())
|
| 203 |
-
# sen_list.append(txt)
|
| 204 |
-
# O = ' '.join(sen_list)
|
| 205 |
-
# ret[KK[i]] = {'in' : input[i], 'out' : O}
|
| 206 |
-
|
| 207 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_biogpt.json', 'w') as fl:
|
| 208 |
-
# json.dump(ret, fl, indent=4)
|
| 209 |
-
|
| 210 |
elif args.mode == 'finetune':
|
| 211 |
|
| 212 |
import spacy
|
|
@@ -260,34 +221,6 @@ elif args.mode == 'finetune':
|
|
| 260 |
vec[i] = True
|
| 261 |
return vec, span
|
| 262 |
|
| 263 |
-
# def mask_func(tokenized_sen, position):
|
| 264 |
-
|
| 265 |
-
# if len(tokenized_sen) == 0:
|
| 266 |
-
# return []
|
| 267 |
-
# token_list = []
|
| 268 |
-
# # for sen in tokenized_sen:
|
| 269 |
-
# # for token in sen:
|
| 270 |
-
# # token_list.append(token)
|
| 271 |
-
# for sen in tokenized_sen:
|
| 272 |
-
# token_list += sen.text.split(' ')
|
| 273 |
-
# l_p = 0
|
| 274 |
-
# r_p = 1
|
| 275 |
-
# assert position == 'front' or position == 'back'
|
| 276 |
-
# if position == 'back':
|
| 277 |
-
# l_p, r_p = r_p, l_p
|
| 278 |
-
# P = np.linspace(start = l_p, stop = r_p, num = len(token_list))
|
| 279 |
-
# P = (P ** 3) * 0.4
|
| 280 |
-
|
| 281 |
-
# ret_list = []
|
| 282 |
-
# for t, p in zip(token_list, list(P)):
|
| 283 |
-
# if '.' in t or '(' in t or ')' in t or '[' in t or ']' in t:
|
| 284 |
-
# ret_list.append(t)
|
| 285 |
-
# else:
|
| 286 |
-
# if np.random.rand() < p:
|
| 287 |
-
# ret_list.append('<mask>')
|
| 288 |
-
# else:
|
| 289 |
-
# ret_list.append(t)
|
| 290 |
-
# return [' '.join(ret_list)]
|
| 291 |
def mask_func(tokenized_sen):
|
| 292 |
|
| 293 |
if len(tokenized_sen) == 0:
|
|
@@ -441,11 +374,7 @@ elif args.mode == 'finetune':
|
|
| 441 |
ret = {}
|
| 442 |
case_study = {}
|
| 443 |
p_ret = {}
|
| 444 |
-
add = 0
|
| 445 |
dpath_i = 0
|
| 446 |
-
inner_better = 0
|
| 447 |
-
outter_better = 0
|
| 448 |
-
better_than_gpt = 0
|
| 449 |
for i,(k, v) in enumerate(tqdm(draft.items())):
|
| 450 |
|
| 451 |
span = ret_candidates[str(i)]['span']
|
|
@@ -573,80 +502,26 @@ elif args.mode == 'finetune':
|
|
| 573 |
log_Loss = log_Loss[:old_L]
|
| 574 |
# sen_list = sen_list[:old_L]
|
| 575 |
|
| 576 |
-
# mini_span should be preserved
|
| 577 |
-
# for j in range(len(log_Loss)):
|
| 578 |
-
# doc = nlp(sen_list[j])
|
| 579 |
-
# sens = [sen.text for sen in doc.sents]
|
| 580 |
-
# Len = len(sen_list)
|
| 581 |
-
# check_text = ' '.join(sens[j : max(0,len(sens) - Len) + j + 1])
|
| 582 |
-
# if span not in check_text:
|
| 583 |
-
# log_Loss[j] += 1
|
| 584 |
-
|
| 585 |
p = np.argmin(log_Loss)
|
| 586 |
-
if p < old_L // 2:
|
| 587 |
-
inner_better += 1
|
| 588 |
-
else:
|
| 589 |
-
outter_better += 1
|
| 590 |
content = []
|
| 591 |
for i in range(len(real_log_Loss)):
|
| 592 |
content.append([sen_list[i], str(real_log_Loss[i])])
|
| 593 |
scored[k] = {'path':path_text, 'prompt': prompt, 'in':input, 's':text_s, 'o':text_o, 'out': content, 'bound': boundary}
|
| 594 |
p_p = p
|
| 595 |
-
# print('Old_L:', old_L)
|
| 596 |
|
| 597 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
| 598 |
p_p = p+1+old_L
|
| 599 |
-
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
| 600 |
-
add += 1
|
| 601 |
|
| 602 |
-
if real_log_Loss[p]
|
| 603 |
-
better_than_gpt += 1
|
| 604 |
-
else:
|
| 605 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
| 606 |
p = p+1+old_L
|
| 607 |
# case_study[k] = {'path':path_text, 'entity_0': text_s, 'entity_1': text_o, 'GPT_in': input, 'Prompt': prompt, 'GPT_out': {'text': output, 'perplexity': str(np.exp(real_log_Loss[old_L]))}, 'BART_in': BART_in[p], 'BART_out': {'text': sen_list[p], 'perplexity': str(np.exp(real_log_Loss[p]))}, 'Assist': {'text': Assist[p], 'perplexity': str(np.exp(real_log_Loss[p+1+old_L]))}}
|
| 608 |
ret[k] = {'prompt': prompt, 'in':input, 'out': sen_list[p]}
|
| 609 |
-
|
| 610 |
-
print(add)
|
| 611 |
-
print('inner_better:', inner_better)
|
| 612 |
-
print('outter_better:', outter_better)
|
| 613 |
-
print('better_than_gpt:', better_than_gpt)
|
| 614 |
-
print('better_than_replace', add)
|
| 615 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}{args.ratio}_bioBART_finetune.json', 'w') as fl:
|
| 616 |
json.dump(ret, fl, indent=4)
|
| 617 |
-
# with open(f'generate_abstract/bioBART/case_{args.target_split}_{args.reasonable_rate}_bioBART_finetune.json', 'w') as fl:
|
| 618 |
-
# json.dump(case_study, fl, indent=4)
|
| 619 |
with open(f'generate_abstract/bioBART/{args.init_mode}{args.reasonable_rate}{args.ratio}_scored.json', 'w') as fl:
|
| 620 |
json.dump(scored, fl, indent=4)
|
| 621 |
-
|
| 622 |
-
json.dump(p_ret, fl, indent=4)
|
| 623 |
-
|
| 624 |
-
# with open(Parameters.GNBRfile+'original_entity_raw_name', 'rb') as fl:
|
| 625 |
-
# full_entity_raw_name = pkl.load(fl)
|
| 626 |
-
# for k, v in entity_raw_name.items():
|
| 627 |
-
# assert v in full_entity_raw_name[k]
|
| 628 |
-
|
| 629 |
-
# nlp = spacy.load("en_core_web_sm")
|
| 630 |
-
# type_set = set()
|
| 631 |
-
# for aa in range(36):
|
| 632 |
-
# dependency_sen_dict = retieve_sentence_through_edgetype[aa]['manual']
|
| 633 |
-
# tmp_dict = retieve_sentence_through_edgetype[aa]['auto']
|
| 634 |
-
# dependencys = list(dependency_sen_dict.keys()) + list(tmp_dict.keys())
|
| 635 |
-
# for dependency in dependencys:
|
| 636 |
-
# dep_list = dependency.split(' ')
|
| 637 |
-
# for sub_dep in dep_list:
|
| 638 |
-
# sub_dep_list = sub_dep.split('|')
|
| 639 |
-
# assert(len(sub_dep_list) == 3)
|
| 640 |
-
# type_set.add(sub_dep_list[1])
|
| 641 |
-
|
| 642 |
-
# fine_dict = {}
|
| 643 |
-
# for k, v_dict in draft.items():
|
| 644 |
-
|
| 645 |
-
# input = v_dict['in']
|
| 646 |
-
# output = v_dict['out']
|
| 647 |
-
# fine_dict[k] = {'in':input, 'out': input + ' ' + output}
|
| 648 |
-
|
| 649 |
-
# with open(f'generate_abstract/{args.target_split}_{args.reasonable_rate}_sentence_finetune.json', 'w') as fl:
|
| 650 |
-
# json.dump(fine_dict, fl, indent=4)
|
| 651 |
else:
|
| 652 |
raise Exception('Wrong mode !!')
|
|
|
|
| 162 |
|
| 163 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}_sentence.json', 'w') as fl:
|
| 164 |
json.dump(single_sentence, fl, indent=4)
|
| 165 |
+
|
|
|
|
|
|
|
|
|
|
| 166 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_path.json', 'w') as fl:
|
| 167 |
fl.write('\n'.join(test_dp))
|
| 168 |
with open (f'generate_abstract/path/{args.init_mode}{args.reasonable_rate}_temp.json', 'w') as fl:
|
| 169 |
fl.write('\n'.join(test_text))
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
elif args.mode == 'finetune':
|
| 172 |
|
| 173 |
import spacy
|
|
|
|
| 221 |
vec[i] = True
|
| 222 |
return vec, span
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
def mask_func(tokenized_sen):
|
| 225 |
|
| 226 |
if len(tokenized_sen) == 0:
|
|
|
|
| 374 |
ret = {}
|
| 375 |
case_study = {}
|
| 376 |
p_ret = {}
|
|
|
|
| 377 |
dpath_i = 0
|
|
|
|
|
|
|
|
|
|
| 378 |
for i,(k, v) in enumerate(tqdm(draft.items())):
|
| 379 |
|
| 380 |
span = ret_candidates[str(i)]['span']
|
|
|
|
| 502 |
log_Loss = log_Loss[:old_L]
|
| 503 |
# sen_list = sen_list[:old_L]
|
| 504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
p = np.argmin(log_Loss)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
content = []
|
| 507 |
for i in range(len(real_log_Loss)):
|
| 508 |
content.append([sen_list[i], str(real_log_Loss[i])])
|
| 509 |
scored[k] = {'path':path_text, 'prompt': prompt, 'in':input, 's':text_s, 'o':text_o, 'out': content, 'bound': boundary}
|
| 510 |
p_p = p
|
|
|
|
| 511 |
|
| 512 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
| 513 |
p_p = p+1+old_L
|
|
|
|
|
|
|
| 514 |
|
| 515 |
+
if real_log_Loss[p] > real_log_Loss[old_L]:
|
|
|
|
|
|
|
| 516 |
if real_log_Loss[p] > real_log_Loss[p+1+old_L]:
|
| 517 |
p = p+1+old_L
|
| 518 |
# case_study[k] = {'path':path_text, 'entity_0': text_s, 'entity_1': text_o, 'GPT_in': input, 'Prompt': prompt, 'GPT_out': {'text': output, 'perplexity': str(np.exp(real_log_Loss[old_L]))}, 'BART_in': BART_in[p], 'BART_out': {'text': sen_list[p], 'perplexity': str(np.exp(real_log_Loss[p]))}, 'Assist': {'text': Assist[p], 'perplexity': str(np.exp(real_log_Loss[p+1+old_L]))}}
|
| 519 |
ret[k] = {'prompt': prompt, 'in':input, 'out': sen_list[p]}
|
| 520 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
with open(f'generate_abstract/{args.init_mode}{args.reasonable_rate}{args.ratio}_bioBART_finetune.json', 'w') as fl:
|
| 522 |
json.dump(ret, fl, indent=4)
|
|
|
|
|
|
|
| 523 |
with open(f'generate_abstract/bioBART/{args.init_mode}{args.reasonable_rate}{args.ratio}_scored.json', 'w') as fl:
|
| 524 |
json.dump(scored, fl, indent=4)
|
| 525 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
else:
|
| 527 |
raise Exception('Wrong mode !!')
|
DiseaseAgnostic/generate_abstract/random0.7_bioBART_finetune.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
DiseaseAgnostic/processed_data/attack_edge_distmult_0.7random.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b0ccfbd4d67a60aeef746e45f3e322612f92d2f4ee28f4fe645a84f8284a226
|
| 3 |
+
size 4014
|
DiseaseAgnostic/processed_data/target_0.7random.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ceda69a4136eb899e6ef21a7ff56ac00d75eac71b056181e7d816532f041634
|
| 3 |
+
size 1214
|