File size: 10,080 Bytes
a4122d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr

model_ids = {"models/runwayml/stable-diffusion-v1-5":"stable-diffusion-v1-5",
           "models/stabilityai/stable-diffusion-2":"stable-diffusion-2",
           "models/prompthero/openjourney":"openjourney",
           }
tab_actions = []
tab_titles = []
for model_id in model_ids.keys():
    print(model_id, model_ids[model_id])
    try:
        tab = gr.Interface.load(model_id)
        tab_actions.append(tab)
        tab_titles.append(model_ids[model_id])
    except:
        pass

def infer(prompt):
    # gr.Interface.load("models/runwayml/stable-diffusion-v1-5",prompt=prompt).launch()
    return prompt

start_work = """async() => {
    function isMobile() {
        try {
            document.createEvent("TouchEvent"); return true;
        } catch(e) {
            return false; 
        }
    }

	function getClientHeight()
	{
	  var clientHeight=0;
	  if(document.body.clientHeight&&document.documentElement.clientHeight) {
		var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
	  } else {
		var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
	  }
	  return clientHeight;
	}
 
    function setNativeValue(element, value) {
      const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
      const prototype = Object.getPrototypeOf(element);
      const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
      
      if (valueSetter && valueSetter !== prototypeValueSetter) {
            prototypeValueSetter.call(element, value);
      } else {
            valueSetter.call(element, value);
      }
    }

    var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
    if (!gradioEl) {
        gradioEl = document.querySelector('body > gradio-app');
    }
    
    if (typeof window['gradioEl'] === 'undefined') {
        window['gradioEl'] = gradioEl;
        
        tabitems = window['gradioEl'].querySelectorAll('.tabitem');
        for (var i = 0; i < tabitems.length; i++) {    
            tabitems[i].childNodes[0].children[0].style.display='none';
            tabitems[i].childNodes[0].children[1].children[0].style.display='none';
            tabitems[i].childNodes[0].children[1].children[1].children[0].children[1].style.display="none"; 
        }    
        tab_demo = window['gradioEl'].querySelectorAll('#tab_demo')[0];
        tab_demo.style.display = "block";
        tab_demo.setAttribute('style', 'height: 100%;');

        const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
        const page2 = window['gradioEl'].querySelectorAll('#page_2')[0]; 
    
        page1.style.display = "none";
        page2.style.display = "block";    

        window['prevPrompt'] = '';
        window['doCheckPrompt'] = 0;
        window['checkPrompt'] = function checkPrompt() {
            try {
                    texts = window['gradioEl'].querySelectorAll('textarea');
                    text0 = texts[0];    
                    text1 = texts[1];
                    if (window['doCheckPrompt'] == 0 && window['prevPrompt'] != text1.value) {
                            window['doCheckPrompt'] = 1;
                            window['prevPrompt'] = text1.value;
                            for (var i = 2; i < texts.length; i++) {
                                setNativeValue(texts[i], text1.value);
                                texts[i].dispatchEvent(new Event('input', { bubbles: true }));
                            }                        
                            setTimeout(function() {
                                text1 = window['gradioEl'].querySelectorAll('textarea')[1];    
                                //console.log('do_click()_1_' + text1.value);
                                
                                btns = window['gradioEl'].querySelectorAll('button');
                                for (var i = 0; i < btns.length; i++) {
                                    if (btns[i].innerText == 'Submit') {
                                        btns[i].focus();
                                        btns[i].click();                
                                       //break;
                                    }
                                }
                                //console.log('do_click()_3_');
                                window['doCheckPrompt'] = 0;
                            }, 10);                   
                    }
            } catch(e) {
            }        
        }
        window['checkPrompt_interval'] = window.setInterval("window.checkPrompt()", 100);         
    }

    /*
    texts = gradioEl.querySelectorAll('textarea');
    text0 = gradioEl.querySelectorAll('textarea')[0];    
    text1 = gradioEl.querySelectorAll('textarea')[0];
    
    for (var i = 1; i < texts.length; i++) {
        setNativeValue(texts[i], text0.value);
        texts[i].dispatchEvent(new Event('input', { bubbles: true }));
    }

    var st = setTimeout(function() {
        text1 = window['gradioEl'].querySelectorAll('textarea')[1];    
        console.log('do_click()_1_' + text1.value);
        
        btns = window['gradioEl'].querySelectorAll('button');
        for (var i = 0; i < btns.length; i++) {
            if (btns[i].innerText == 'Submit') {
                btns[i].focus();
                btns[i].click();                
               //break;
            }
        }
        console.log('do_click()_3_');
    }, 10);
    */
    
    return false;
}"""

with gr.Blocks(title='Text to Image') as demo:
    with gr.Group(elem_id="page_1", visible=True) as page_1:
        with gr.Box():            
            with gr.Row():
                start_button = gr.Button("Let's GO!", elem_id="start-btn", visible=True) 
                start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
                
    with gr.Group(elem_id="page_2", visible=False) as page_2:                 
            with gr.Row(elem_id="prompt_row"):
                prompt_input0 = gr.Textbox(lines=4, label="prompt")
                prompt_input1 = gr.Textbox(lines=4, label="prompt", visible=False)
            with gr.Row():
                submit_btn = gr.Button(value = "submit",elem_id="erase-btn").style(
                        margin=True,
                        rounded=(True, True, True, True),
                    )
            with gr.Row(elem_id='tab_demo', visible=True).style(height=5):
                tab_demo = gr.TabbedInterface(tab_actions, tab_titles) 

            submit_btn.click(fn=infer, inputs=[prompt_input0], outputs=[prompt_input1])

# prompt_input = gr.Textbox(lines=4, label="Input prompt")
# tab_demo = gr.TabbedInterface([sd15_demo, sd20_demo, openjourney_demo], ["stable-diffusion-v1-5", "stable-diffusion-2", "openjourney"])

# demo = gr.Interface(fn=infer, 
#                      inputs=[prompt_input], 
#                      outputs=[tab_demo],
#                     )

if __name__ == "__main__":
    demo.launch()

    

# import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
# from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

# import gradio as gr
# import PIL.Image
# import numpy as np
# import random
# import torch
# import subprocess

# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # print('Using device:', device)

# HF_TOKEN_SD=os.environ.get('HF_TOKEN_SD')

# if 0==0:
#     model_id = "runwayml/stable-diffusion-v1-5"

#     model_id = "prompthero/openjourney" 
    
#     # pipeClass = StableDiffusionImg2ImgPipeline
#     pipeClass = StableDiffusionPipeline     
#     className = pipeClass.__name__
#     if className == 'StableDiffusionInpaintPipeline':
#         model_id = "runwayml/stable-diffusion-inpainting"    
        
#     sd_pipe = pipeClass.from_pretrained(
#         model_id, 
#         # revision="fp16",
#         torch_dtype=torch.float16, 
#         # use_auth_token=HF_TOKEN_SD
#       ) # .to(device)

# def predict(prompt, steps=100, seed=42, guidance_scale=6.0):
#     #torch.cuda.empty_cache()
#     # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
#     generator = torch.manual_seed(seed)
#     images = sd_pipe([prompt], 
#             generator=generator, 
#             num_inference_steps=steps, 
#             eta=0.3, 
#             guidance_scale=guidance_scale)["sample"]
#     # print(subprocess.check_output(["nvidia-smi"], stderr=subprocess.STDOUT).decode("utf8"))
#     return images[0]

# random_seed = random.randint(0, 2147483647)
# gr.Interface(
#     predict,
#     inputs=[
#         gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
#         gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
#         gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
#         gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
#     ],
#     outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
#     css="#output_image{width: 256px}",
#     title="Text-to-Image_Latent_Diffusion",
#     # description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/CompVis/ldm-text2im-large-256\">ldm-text2im-large-256</a> model by <a href=\"https://huggingface.co/CompVis\">CompVis</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. The goal of this demo is to showcase the diffusers library and you can check how the code works here. If you want the state-of-the-art experience with Latent Diffusion text-to-image check out the <a href=\"https://huggingface.co/spaces/multimodalart/latentdiffusion\">main Spaces</a>.",
# ).launch()