Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import logging | |
| import os | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.structures import BoxMode | |
| from detectron2.utils.file_io import PathManager | |
| from fvcore.common.timer import Timer | |
| from .builtin_meta import _get_coco_instances_meta | |
| from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES | |
| from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES | |
| from .lvis_v1_category_image_count import ( | |
| LVIS_CATEGORY_IMAGE_COUNT as LVIS_V1_CATEGORY_IMAGE_COUNT, | |
| ) | |
| """ | |
| This file contains functions to parse LVIS-format annotations into dicts in the | |
| "Detectron2 format". | |
| """ | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"] | |
| def register_lvis_instances(name, metadata, json_file, image_root): | |
| """ | |
| Register a dataset in LVIS's json annotation format for instance detection and segmentation. | |
| Args: | |
| name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train". | |
| metadata (dict): extra metadata associated with this dataset. It can be an empty dict. | |
| json_file (str): path to the json instance annotation file. | |
| image_root (str or path-like): directory which contains all the images. | |
| """ | |
| DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name)) | |
| MetadataCatalog.get(name).set( | |
| json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata | |
| ) | |
| def load_lvis_json( | |
| json_file, image_root, dataset_name=None, extra_annotation_keys=None | |
| ): | |
| """ | |
| Load a json file in LVIS's annotation format. | |
| Args: | |
| json_file (str): full path to the LVIS json annotation file. | |
| image_root (str): the directory where the images in this json file exists. | |
| dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). | |
| If provided, this function will put "thing_classes" into the metadata | |
| associated with this dataset. | |
| extra_annotation_keys (list[str]): list of per-annotation keys that should also be | |
| loaded into the dataset dict (besides "bbox", "bbox_mode", "category_id", | |
| "segmentation"). The values for these keys will be returned as-is. | |
| Returns: | |
| list[dict]: a list of dicts in Detectron2 standard format. (See | |
| `Using Custom Datasets </tutorials/datasets.html>`_ ) | |
| Notes: | |
| 1. This function does not read the image files. | |
| The results do not have the "image" field. | |
| """ | |
| from lvis import LVIS | |
| json_file = PathManager.get_local_path(json_file) | |
| timer = Timer() | |
| lvis_api = LVIS(json_file) | |
| if timer.seconds() > 1: | |
| logger.info( | |
| "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) | |
| ) | |
| if dataset_name is not None: | |
| meta = get_lvis_instances_meta(dataset_name) | |
| MetadataCatalog.get(dataset_name).set(**meta) | |
| # sort indices for reproducible results | |
| img_ids = sorted(lvis_api.imgs.keys()) | |
| # imgs is a list of dicts, each looks something like: | |
| # {'license': 4, | |
| # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
| # 'file_name': 'COCO_val2014_000000001268.jpg', | |
| # 'height': 427, | |
| # 'width': 640, | |
| # 'date_captured': '2013-11-17 05:57:24', | |
| # 'id': 1268} | |
| imgs = lvis_api.load_imgs(img_ids) | |
| # anns is a list[list[dict]], where each dict is an annotation | |
| # record for an object. The inner list enumerates the objects in an image | |
| # and the outer list enumerates over images. Example of anns[0]: | |
| # [{'segmentation': [[192.81, | |
| # 247.09, | |
| # ... | |
| # 219.03, | |
| # 249.06]], | |
| # 'area': 1035.749, | |
| # 'image_id': 1268, | |
| # 'bbox': [192.81, 224.8, 74.73, 33.43], | |
| # 'category_id': 16, | |
| # 'id': 42986}, | |
| # ...] | |
| anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
| # Sanity check that each annotation has a unique id | |
| ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
| assert len(set(ann_ids)) == len( | |
| ann_ids | |
| ), "Annotation ids in '{}' are not unique".format(json_file) | |
| imgs_anns = list(zip(imgs, anns)) | |
| logger.info( | |
| "Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file) | |
| ) | |
| if extra_annotation_keys: | |
| logger.info( | |
| "The following extra annotation keys will be loaded: {} ".format( | |
| extra_annotation_keys | |
| ) | |
| ) | |
| else: | |
| extra_annotation_keys = [] | |
| def get_file_name(img_root, img_dict): | |
| # Determine the path including the split folder ("train2017", "val2017", "test2017") from | |
| # the coco_url field. Example: | |
| # 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg' | |
| split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | |
| return os.path.join(img_root + split_folder, file_name) | |
| dataset_dicts = [] | |
| for (img_dict, anno_dict_list) in imgs_anns: | |
| record = {} | |
| record["file_name"] = get_file_name(image_root, img_dict) | |
| record["height"] = img_dict["height"] | |
| record["width"] = img_dict["width"] | |
| record["not_exhaustive_category_ids"] = img_dict.get( | |
| "not_exhaustive_category_ids", [] | |
| ) | |
| record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | |
| image_id = record["image_id"] = img_dict["id"] | |
| objs = [] | |
| for anno in anno_dict_list: | |
| # Check that the image_id in this annotation is the same as | |
| # the image_id we're looking at. | |
| # This fails only when the data parsing logic or the annotation file is buggy. | |
| assert anno["image_id"] == image_id | |
| obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} | |
| # LVIS data loader can be used to load COCO dataset categories. In this case `meta` | |
| # variable will have a field with COCO-specific category mapping. | |
| if dataset_name is not None and "thing_dataset_id_to_contiguous_id" in meta: | |
| obj["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
| anno["category_id"] | |
| ] | |
| else: | |
| obj["category_id"] = ( | |
| anno["category_id"] - 1 | |
| ) # Convert 1-indexed to 0-indexed | |
| segm = anno["segmentation"] # list[list[float]] | |
| # filter out invalid polygons (< 3 points) | |
| valid_segm = [ | |
| poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6 | |
| ] | |
| assert len(segm) == len( | |
| valid_segm | |
| ), "Annotation contains an invalid polygon with < 3 points" | |
| assert len(segm) > 0 | |
| obj["segmentation"] = segm | |
| for extra_ann_key in extra_annotation_keys: | |
| obj[extra_ann_key] = anno[extra_ann_key] | |
| objs.append(obj) | |
| record["annotations"] = objs | |
| dataset_dicts.append(record) | |
| return dataset_dicts | |
| def get_lvis_instances_meta(dataset_name): | |
| """ | |
| Load LVIS metadata. | |
| Args: | |
| dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5"). | |
| Returns: | |
| dict: LVIS metadata with keys: thing_classes | |
| """ | |
| if "cocofied" in dataset_name: | |
| return _get_coco_instances_meta() | |
| if "v0.5" in dataset_name: | |
| return _get_lvis_instances_meta_v0_5() | |
| elif "v1" in dataset_name: | |
| return _get_lvis_instances_meta_v1() | |
| raise ValueError("No built-in metadata for dataset {}".format(dataset_name)) | |
| def _get_lvis_instances_meta_v0_5(): | |
| assert len(LVIS_V0_5_CATEGORIES) == 1230 | |
| cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES] | |
| assert min(cat_ids) == 1 and max(cat_ids) == len( | |
| cat_ids | |
| ), "Category ids are not in [1, #categories], as expected" | |
| # Ensure that the category list is sorted by id | |
| lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"]) | |
| thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
| meta = {"thing_classes": thing_classes} | |
| return meta | |
| def _get_lvis_instances_meta_v1(): | |
| assert len(LVIS_V1_CATEGORIES) == 1203 | |
| cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES] | |
| assert min(cat_ids) == 1 and max(cat_ids) == len( | |
| cat_ids | |
| ), "Category ids are not in [1, #categories], as expected" | |
| # Ensure that the category list is sorted by id | |
| lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"]) | |
| thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
| meta = { | |
| "thing_classes": thing_classes, | |
| "class_image_count": LVIS_V1_CATEGORY_IMAGE_COUNT, | |
| } | |
| return meta | |
| def main() -> None: | |
| global logger | |
| """ | |
| Test the LVIS json dataset loader. | |
| Usage: | |
| python -m detectron2.data.datasets.lvis \ | |
| path/to/json path/to/image_root dataset_name vis_limit | |
| """ | |
| import sys | |
| import detectron2.data.datasets # noqa # add pre-defined metadata | |
| import numpy as np | |
| from detectron2.utils.logger import setup_logger | |
| from detectron2.utils.visualizer import Visualizer | |
| from PIL import Image | |
| logger = setup_logger(name=__name__) | |
| meta = MetadataCatalog.get(sys.argv[3]) | |
| dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3]) | |
| logger.info("Done loading {} samples.".format(len(dicts))) | |
| dirname = "lvis-data-vis" | |
| os.makedirs(dirname, exist_ok=True) | |
| for d in dicts[: int(sys.argv[4])]: | |
| img = np.array(Image.open(d["file_name"])) | |
| visualizer = Visualizer(img, metadata=meta) | |
| vis = visualizer.draw_dataset_dict(d) | |
| fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
| vis.save(fpath) | |
| if __name__ == "__main__": | |
| main() # pragma: no cover | |