Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,326 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from library.strategy_base import TokenizeStrategy, TextEncodingStrategy, TextEncoderOutputsCachingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
TOKENIZER1_PATH = "openai/clip-vit-large-patch14"
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
class SdxlTokenizeStrategy(TokenizeStrategy):
def __init__(self, max_length: Optional[int], tokenizer_cache_dir: Optional[str] = None) -> None:
self.tokenizer1 = self._load_tokenizer(CLIPTokenizer, TOKENIZER1_PATH, tokenizer_cache_dir=tokenizer_cache_dir)
self.tokenizer2 = self._load_tokenizer(CLIPTokenizer, TOKENIZER2_PATH, tokenizer_cache_dir=tokenizer_cache_dir)
self.tokenizer2.pad_token_id = 0 # use 0 as pad token for tokenizer2
if max_length is None:
self.max_length = self.tokenizer1.model_max_length
else:
self.max_length = max_length + 2
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
return (
torch.stack([self._get_input_ids(self.tokenizer1, t, self.max_length) for t in text], dim=0),
torch.stack([self._get_input_ids(self.tokenizer2, t, self.max_length) for t in text], dim=0),
)
def tokenize_with_weights(self, text: str | List[str]) -> Tuple[List[torch.Tensor]]:
text = [text] if isinstance(text, str) else text
tokens1_list, tokens2_list = [], []
weights1_list, weights2_list = [], []
for t in text:
tokens1, weights1 = self._get_input_ids(self.tokenizer1, t, self.max_length, weighted=True)
tokens2, weights2 = self._get_input_ids(self.tokenizer2, t, self.max_length, weighted=True)
tokens1_list.append(tokens1)
tokens2_list.append(tokens2)
weights1_list.append(weights1)
weights2_list.append(weights2)
return [torch.stack(tokens1_list, dim=0), torch.stack(tokens2_list, dim=0)], [
torch.stack(weights1_list, dim=0),
torch.stack(weights2_list, dim=0),
]
class SdxlTextEncodingStrategy(TextEncodingStrategy):
def __init__(self) -> None:
pass
def _pool_workaround(
self, text_encoder: CLIPTextModelWithProjection, last_hidden_state: torch.Tensor, input_ids: torch.Tensor, eos_token_id: int
):
r"""
workaround for CLIP's pooling bug: it returns the hidden states for the max token id as the pooled output
instead of the hidden states for the EOS token
If we use Textual Inversion, we need to use the hidden states for the EOS token as the pooled output
Original code from CLIP's pooling function:
\# text_embeds.shape = [batch_size, sequence_length, transformer.width]
\# take features from the eot embedding (eot_token is the highest number in each sequence)
\# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
"""
# input_ids: b*n,77
# find index for EOS token
# Following code is not working if one of the input_ids has multiple EOS tokens (very odd case)
# eos_token_index = torch.where(input_ids == eos_token_id)[1]
# eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# Create a mask where the EOS tokens are
eos_token_mask = (input_ids == eos_token_id).int()
# Use argmax to find the last index of the EOS token for each element in the batch
eos_token_index = torch.argmax(eos_token_mask, dim=1) # this will be 0 if there is no EOS token, it's fine
eos_token_index = eos_token_index.to(device=last_hidden_state.device)
# get hidden states for EOS token
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), eos_token_index
]
# apply projection: projection may be of different dtype than last_hidden_state
pooled_output = text_encoder.text_projection(pooled_output.to(text_encoder.text_projection.weight.dtype))
pooled_output = pooled_output.to(last_hidden_state.dtype)
return pooled_output
def _get_hidden_states_sdxl(
self,
input_ids1: torch.Tensor,
input_ids2: torch.Tensor,
tokenizer1: CLIPTokenizer,
tokenizer2: CLIPTokenizer,
text_encoder1: Union[CLIPTextModel, torch.nn.Module],
text_encoder2: Union[CLIPTextModelWithProjection, torch.nn.Module],
unwrapped_text_encoder2: Optional[CLIPTextModelWithProjection] = None,
):
# input_ids: b,n,77 -> b*n, 77
b_size = input_ids1.size()[0]
if input_ids1.size()[1] == 1:
max_token_length = None
else:
max_token_length = input_ids1.size()[1] * input_ids1.size()[2]
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77
input_ids1 = input_ids1.to(text_encoder1.device)
input_ids2 = input_ids2.to(text_encoder2.device)
# text_encoder1
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
hidden_states1 = enc_out["hidden_states"][11]
# text_encoder2
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer
# pool2 = enc_out["text_embeds"]
unwrapped_text_encoder2 = unwrapped_text_encoder2 or text_encoder2
pool2 = self._pool_workaround(unwrapped_text_encoder2, enc_out["last_hidden_state"], input_ids2, tokenizer2.eos_token_id)
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
n_size = 1 if max_token_length is None else max_token_length // 75
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))
if max_token_length is not None:
# bs*3, 77, 768 or 1024
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer1.model_max_length):
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS>
hidden_states1 = torch.cat(states_list, dim=1)
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, max_token_length, tokenizer2.model_max_length):
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで
# this causes an error:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# if i > 1:
# for j in range(len(chunk)): # batch_size
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
hidden_states2 = torch.cat(states_list, dim=1)
# pool はnの最初のものを使う
pool2 = pool2[::n_size]
return hidden_states1, hidden_states2, pool2
def encode_tokens(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], tokens: List[torch.Tensor]
) -> List[torch.Tensor]:
"""
Args:
tokenize_strategy: TokenizeStrategy
models: List of models, [text_encoder1, text_encoder2, unwrapped text_encoder2 (optional)].
If text_encoder2 is wrapped by accelerate, unwrapped_text_encoder2 is required
tokens: List of tokens, for text_encoder1 and text_encoder2
"""
if len(models) == 2:
text_encoder1, text_encoder2 = models
unwrapped_text_encoder2 = None
else:
text_encoder1, text_encoder2, unwrapped_text_encoder2 = models
tokens1, tokens2 = tokens
sdxl_tokenize_strategy = tokenize_strategy # type: SdxlTokenizeStrategy
tokenizer1, tokenizer2 = sdxl_tokenize_strategy.tokenizer1, sdxl_tokenize_strategy.tokenizer2
hidden_states1, hidden_states2, pool2 = self._get_hidden_states_sdxl(
tokens1, tokens2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, unwrapped_text_encoder2
)
return [hidden_states1, hidden_states2, pool2]
def encode_tokens_with_weights(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens_list: List[torch.Tensor],
weights_list: List[torch.Tensor],
) -> List[torch.Tensor]:
hidden_states1, hidden_states2, pool2 = self.encode_tokens(tokenize_strategy, models, tokens_list)
weights_list = [weights.to(hidden_states1.device) for weights in weights_list]
# apply weights
if weights_list[0].shape[1] == 1: # no max_token_length
# weights: ((b, 1, 77), (b, 1, 77)), hidden_states: (b, 77, 768), (b, 77, 768)
hidden_states1 = hidden_states1 * weights_list[0].squeeze(1).unsqueeze(2)
hidden_states2 = hidden_states2 * weights_list[1].squeeze(1).unsqueeze(2)
else:
# weights: ((b, n, 77), (b, n, 77)), hidden_states: (b, n*75+2, 768), (b, n*75+2, 768)
for weight, hidden_states in zip(weights_list, [hidden_states1, hidden_states2]):
for i in range(weight.shape[1]):
hidden_states[:, i * 75 + 1 : i * 75 + 76] = hidden_states[:, i * 75 + 1 : i * 75 + 76] * weight[
:, i, 1:-1
].unsqueeze(-1)
return [hidden_states1, hidden_states2, pool2]
class SdxlTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_te_outputs.npz"
def __init__(
self,
cache_to_disk: bool,
batch_size: int,
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
is_weighted: bool = False,
) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial, is_weighted)
def get_outputs_npz_path(self, image_abs_path: str) -> str:
return os.path.splitext(image_abs_path)[0] + SdxlTextEncoderOutputsCachingStrategy.SDXL_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX
def is_disk_cached_outputs_expected(self, npz_path: str):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
try:
npz = np.load(npz_path)
if "hidden_state1" not in npz or "hidden_state2" not in npz or "pool2" not in npz:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
data = np.load(npz_path)
hidden_state1 = data["hidden_state1"]
hidden_state2 = data["hidden_state2"]
pool2 = data["pool2"]
return [hidden_state1, hidden_state2, pool2]
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
):
sdxl_text_encoding_strategy = text_encoding_strategy # type: SdxlTextEncodingStrategy
captions = [info.caption for info in infos]
if self.is_weighted:
tokens_list, weights_list = tokenize_strategy.tokenize_with_weights(captions)
with torch.no_grad():
hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens_with_weights(
tokenize_strategy, models, tokens_list, weights_list
)
else:
tokens1, tokens2 = tokenize_strategy.tokenize(captions)
with torch.no_grad():
hidden_state1, hidden_state2, pool2 = sdxl_text_encoding_strategy.encode_tokens(
tokenize_strategy, models, [tokens1, tokens2]
)
if hidden_state1.dtype == torch.bfloat16:
hidden_state1 = hidden_state1.float()
if hidden_state2.dtype == torch.bfloat16:
hidden_state2 = hidden_state2.float()
if pool2.dtype == torch.bfloat16:
pool2 = pool2.float()
hidden_state1 = hidden_state1.cpu().numpy()
hidden_state2 = hidden_state2.cpu().numpy()
pool2 = pool2.cpu().numpy()
for i, info in enumerate(infos):
hidden_state1_i = hidden_state1[i]
hidden_state2_i = hidden_state2[i]
pool2_i = pool2[i]
if self.cache_to_disk:
np.savez(
info.text_encoder_outputs_npz,
hidden_state1=hidden_state1_i,
hidden_state2=hidden_state2_i,
pool2=pool2_i,
)
else:
info.text_encoder_outputs = [hidden_state1_i, hidden_state2_i, pool2_i]
|