from torch import nn class Stem(nn.Module): """ Stem模块进行1/4的下采样,并将通道数变为64 (b,3,y,x) -> (b,64,y/4,x/4) """ def __init__(self, bn_momentum=.1): super(Stem, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64, momentum=bn_momentum) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64, momentum=bn_momentum) self.relu = nn.ReLU(inplace=True) def forward(self, x): out = self.bn1(self.conv1(x)) out = self.bn2(self.conv2(out)) return self.relu(out) if __name__ == '__main__': import torch model = Stem() x = torch.randn(1,3,128,64) print(model(x).size()) # torch.Size([1,64,32,16])