Spaces:
Running
Running
from torch import nn | |
class Stem(nn.Module): | |
""" | |
Stem模块进行1/4的下采样,并将通道数变为64 | |
(b,3,y,x) -> (b,64,y/4,x/4) | |
""" | |
def __init__(self, bn_momentum=.1): | |
super(Stem, self).__init__() | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, | |
stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=bn_momentum) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, | |
stride=2, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(64, momentum=bn_momentum) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
out = self.bn1(self.conv1(x)) | |
out = self.bn2(self.conv2(out)) | |
return self.relu(out) | |
if __name__ == '__main__': | |
import torch | |
model = Stem() | |
x = torch.randn(1,3,128,64) | |
print(model(x).size()) # torch.Size([1,64,32,16]) | |