Spaces:
Running
Running
from torch import nn | |
class Bottleneck(nn.Module): | |
""" | |
(b,c_in,y,x) -> (b,4*c_out,y,x) | |
""" | |
expansion = 4 | |
def __init__(self, inplanes, planes, downsample=None, bn_momentum=.1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, | |
kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=bn_momentum) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, | |
stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=bn_momentum) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, | |
kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion, | |
momentum=bn_momentum) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
def forward(self, x): | |
residual = x | |
out = self.relu(self.bn1(self.conv1(x))) | |
out = self.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
return self.relu(out) | |
if __name__ == '__main__': | |
import torch | |
downsample = nn.Sequential( | |
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False), | |
nn.BatchNorm2d(256), | |
) | |
model = Bottleneck(64, 64, downsample=downsample) | |
x = torch.randn(1, 64, 128, 128) | |
print(model(x).size()) # torch.Size([1,256,128,128]) | |
model = Bottleneck(256,64) | |
x = torch.randn(1,256,128,128) | |
print(model(x).size()) # torch.Size([2,256,128,128]) | |