File size: 12,389 Bytes
93a6fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383ca9f
93a6fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85c769
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import skimage
import torch
from PIL import Image

joints = [
    'left ankle',
    'left knee',
    'left hip',
    'right hip',
    'right knee',
    'right ankle',
    'belly',
    'chest',
    'neck',
    'head',
    'left wrist',
    'left elbow',
    'left shoulder',
    'right shoulder',
    'right elbow',
    'right wrist'
]


def generate_heatmap(heatmap, pt, sigma=(33, 33), sigma_valu=7):
    '''
    :param heatmap: should be a np zeros array with shape (H,W) (only i channel), not (H,W,1)
    :param pt: point coords, np array
    :param sigma: should be a tuple with odd values (obsolete)
    :param sigma_valu: vaalue for gaussian blur
    :return: a np array of one joint heatmap with shape (H,W)

    This function is obsolete, use 'generate_heatmaps()' instead.
    '''
    heatmap[int(pt[1])][int(pt[0])] = 1
    # heatmap = cv2.GaussianBlur(heatmap, sigma, 0)  #(H,W,1) -> (H,W)
    heatmap = skimage.filters.gaussian(
        heatmap, sigma=sigma_valu)  # (H,W,1) -> (H,W)
    am = np.amax(heatmap)
    heatmap = heatmap/am
    return heatmap


def generate_heatmaps(img, pts, sigma=(33, 33), sigma_valu=7):
    '''
    :param img: np arrray img, (H,W,C)
    :param pts: joint points coords, np array, same resolu as img
    :param sigma: should be a tuple with odd values (obsolete)
    :param sigma_valu: vaalue for gaussian blur
    :return: np array heatmaps, (H,W,num_pts)
    '''
    H, W = img.shape[0], img.shape[1]
    num_pts = pts.shape[0]
    heatmaps = np.zeros((H, W, num_pts))
    for i, pt in enumerate(pts):
        # Filter unavailable heatmaps
        if pt[0] == 0 and pt[1] == 0:
            continue
        # Filter some points out of the image
        if pt[0] >= W:
            pt[0] = W-1
        if pt[1] >= H:
            pt[1] = H-1
        heatmap = heatmaps[:, :, i]
        heatmap[int(pt[1])][int(pt[0])] = 1
        # heatmap = cv2.GaussianBlur(heatmap, sigma, 0)  #(H,W,1) -> (H,W)
        heatmap = skimage.filters.gaussian(
            heatmap, sigma=sigma_valu)  # (H,W,1) -> (H,W)
        am = np.amax(heatmap)
        heatmap = heatmap / am
        heatmaps[:, :, i] = heatmap
    return heatmaps


def load_image(path_image):
    img = mpimg.imread(path_image)
    # Return a np array (H,W,C)
    return img


def crop(img, ele_anno, use_randscale=True, use_randflipLR=False, use_randcolor=False):
    '''
    :param img: np array of the origin image, (H,W,C)
    :param ele_anno: one element of json annotation
    :return: img_crop, ary_pts_crop, c_crop after cropping
    '''

    H, W = img.shape[0], img.shape[1]
    s = ele_anno['scale_provided']
    c = ele_anno['objpos']

    # Adjust center and scale
    if c[0] != -1:
        c[1] = c[1] + 15 * s
        s = s * 1.25
    ary_pts = np.array(ele_anno['joint_self'])  # (16, 3)
    ary_pts_temp = ary_pts[np.any(ary_pts != [0, 0, 0], axis=1)]

    if use_randscale:
        scale_rand = np.random.uniform(low=1.0, high=3.0)
    else:
        scale_rand = 1

    W_min = max(np.amin(ary_pts_temp, axis=0)[0] - s * 15 * scale_rand, 0)
    H_min = max(np.amin(ary_pts_temp, axis=0)[1] - s * 15 * scale_rand, 0)
    W_max = min(np.amax(ary_pts_temp, axis=0)[0] + s * 15 * scale_rand, W)
    H_max = min(np.amax(ary_pts_temp, axis=0)[1] + s * 15 * scale_rand, H)
    W_len = W_max - W_min
    H_len = H_max - H_min
    window_len = max(H_len, W_len)
    pad_updown = (window_len - H_len)/2
    pad_leftright = (window_len - W_len)/2

    # Calculate 4 corner position
    W_low = max((W_min - pad_leftright), 0)
    W_high = min((W_max + pad_leftright), W)
    H_low = max((H_min - pad_updown), 0)
    H_high = min((H_max + pad_updown), H)

    # Update joint points and center
    ary_pts_crop = np.where(
        ary_pts == [0, 0, 0], ary_pts, ary_pts - np.array([W_low, H_low, 0]))
    c_crop = c - np.array([W_low, H_low])

    img_crop = img[int(H_low):int(H_high), int(W_low):int(W_high), :]

    # Pad when H, W different
    H_new, W_new = img_crop.shape[0], img_crop.shape[1]
    window_len_new = max(H_new, W_new)
    pad_updown_new = int((window_len_new - H_new)/2)
    pad_leftright_new = int((window_len_new - W_new)/2)

    # ReUpdate joint points and center (because of the padding)
    ary_pts_crop = np.where(ary_pts_crop == [
                            0, 0, 0], ary_pts_crop, ary_pts_crop + np.array([pad_leftright_new, pad_updown_new, 0]))
    c_crop = c_crop + np.array([pad_leftright_new, pad_updown_new])

    img_crop = cv2.copyMakeBorder(img_crop, pad_updown_new, pad_updown_new,
                                  pad_leftright_new, pad_leftright_new, cv2.BORDER_CONSTANT, value=0)

    # change dtype and num scale
    img_crop = img_crop / 255.
    img_crop = img_crop.astype(np.float64)

    if use_randflipLR:
        flip = np.random.random() > 0.5
        # print('rand_flipLR', flip)
        if flip:
            # (H,W,C)
            img_crop = np.flip(img_crop, 1)
            # Calculate flip pts, remember to filter [0,0] which is no available heatmap
            ary_pts_crop = np.where(ary_pts_crop == [0, 0, 0], ary_pts_crop,
                                    [window_len_new, 0, 0] + ary_pts_crop * [-1, 1, 0])
            c_crop = [window_len_new, 0] + c_crop * [-1, 1]
            # Rearrange pts
            ary_pts_crop = np.concatenate(
                (ary_pts_crop[5::-1], ary_pts_crop[6:10], ary_pts_crop[15:9:-1]))

    if use_randcolor:
        randcolor = np.random.random() > 0.5
        # print('rand_color', randcolor)
        if randcolor:
            img_crop[...,
                     0] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)
            img_crop[...,
                     1] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)
            img_crop[...,
                     2] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)

    return img_crop, ary_pts_crop, c_crop


def change_resolu(img, pts, c, resolu_out=(256, 256)):
    '''
    :param img: np array of the origin image
    :param pts: joint points np array corresponding to the image, same resolu as img
    :param c: center
    :param resolu_out: a list or tuple
    :return: img_out, pts_out, c_out under resolu_out
    '''
    H_in = img.shape[0]
    W_in = img.shape[1]
    H_out = resolu_out[0]
    W_out = resolu_out[1]
    H_scale = H_in/H_out
    W_scale = W_in/W_out

    pts_out = pts/np.array([W_scale, H_scale, 1])
    c_out = c/np.array([W_scale, H_scale])
    img_out = skimage.transform.resize(img, tuple(resolu_out))

    return img_out, pts_out, c_out


def heatmaps_to_coords(heatmaps, resolu_out=[64, 64], prob_threshold=0.2):
    '''
    :param heatmaps: tensor with shape (64,64,16)
    :param resolu_out: output resolution list
    :return coord_joints: np array, shape (16,2)
    '''

    num_joints = heatmaps.shape[2]
    # Resize
    heatmaps = skimage.transform.resize(heatmaps, tuple(resolu_out))

    coord_joints = np.zeros((num_joints, 3))
    for i in range(num_joints):
        heatmap = heatmaps[..., i]
        max = np.max(heatmap)
        # Only keep points larger than a threshold
        if max >= prob_threshold:
            idx = np.where(heatmap == max)
            H = idx[0][0]
            W = idx[1][0]
        else:
            H = 0
            W = 0
        coord_joints[i] = [W, H, max]
    return coord_joints


def show_heatmaps(img, heatmaps, c=np.zeros((2)), num_fig=1):
    '''
    :param img: np array (H,W,3)
    :param heatmaps: np array (H,W,num_pts)
    :param c: center, np array (2,)
    '''
    H, W = img.shape[0], img.shape[1]

    if heatmaps.shape[0] != H:
        heatmaps = skimage.transform.resize(heatmaps, (H, W))

    plt.figure(num_fig)
    for i in range(heatmaps.shape[2] + 1):
        plt.subplot(4, 5, i + 1)
        if i == 0:
            plt.title('Origin')
        else:
            plt.title(joints[i-1])

        if i == 0:
            plt.imshow(img)
        else:
            plt.imshow(heatmaps[:, :, i - 1])

        plt.axis('off')
    plt.subplot(4, 5, 20)
    plt.axis('off')
    plt.show()


def heatmap2rgb(heatmap):
    """
    : heatmap: (h,w)
    """

    heatmap = heatmap.detach().cpu().numpy()

    # plt.figure(figsize=(1,1))
    # plt.axis('off')
    # plt.imshow(heatmap)
    # plt.savefig('tmp/tmp.jpg', bbox_inches='tight', pad_inches=0, dpi=70)
    # plt.close()
    # plt.clf()

    # img = Image.open('tmp/tmp.jpg')
    cm = plt.get_cmap('jet')
    normed_data = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap + 1e-8))
    mapped_data = cm(normed_data)

    # (h,w,c)
    # img = np.array(img)
    img = np.array(mapped_data)
    img = img[:,:,:3]
    img = torch.tensor(img).permute(2, 0, 1)
    
    return img


def heatmaps2rgb(heatmaps):
    """
    : heatmaps: (b,h,w)
    """

    out_imgs = []
    for heatmap in heatmaps:
        out_imgs.append(heatmap2rgb(heatmap))

    return torch.stack(out_imgs)


# def draw_joints(img, pts):
#     scores = pts[:,2]
#     pts = np.array(pts).astype(int)

#     for i in range(pts.shape[0]):
#         if pts[i, 0] != 0 and pts[i, 1] != 0:
#             img = cv2.circle(img, (pts[i, 0], pts[i, 1]), radius=3,
#                              color=(255, 0, 0), thickness=-1)
#             print('img',img.max(),img.min())
#             # img = cv2.putText(img, f'{joints[i]}: {scores[i]:.2f}', (
#             #     pts[i, 0]+5, pts[i, 1]-5), cv2.FONT_HERSHEY_SIMPLEX, .25, (255, 0, 0))

#     # Left arm
#     for i in range(10, 13-1):
#         if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
#             img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
#                            pts[i+1, 1]), color=(255, 0, 0), thickness=1)

#     # Right arm
#     for i in range(13, 16-1):
#         if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
#             img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
#                            pts[i+1, 1]), color=(255, 0, 0), thickness=1)

#     # Left leg
#     for i in range(0, 3-1):
#         if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
#             img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
#                            pts[i+1, 1]), color=(255, 0, 0), thickness=1)
#     # Right leg
#     for i in range(3, 6-1):
#         if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
#             img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
#                            pts[i+1, 1]), color=(255, 0, 0), thickness=1)

#     # Body
#     for i in range(6, 10-1):
#         if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
#             img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
#                            pts[i+1, 1]), color=(255, 0, 0), thickness=1)

#     if pts[2, 0] != 0 and pts[2, 1] != 0 and pts[3, 0] != 0 and pts[3, 1] != 0:
#         img = cv2.line(img, (pts[2, 0], pts[2, 1]), (pts[2+1, 0],
#                        pts[2+1, 1]), color=(255, 0, 0), thickness=1)
#     if pts[12, 0] != 0 and pts[12, 1] != 0 and pts[13, 0] != 0 and pts[13, 1] != 0:
#         img = cv2.line(img, (pts[12, 0], pts[12, 1]), (pts[12+1, 0],
#                        pts[12+1, 1]), color=(255, 0, 0), thickness=1)

#     return img
def draw_joints(img, pts):
    # Convert the image to the range [0, 255] for visualization
    img_visualization = (img).astype(np.uint8)

    # Draw lines for the body parts
    for i in range(10, 13 - 1):
        draw_line(img_visualization, pts[i], pts[i + 1])

    for i in range(13, 16 - 1):
        draw_line(img_visualization, pts[i], pts[i + 1])

    for i in range(0, 3 - 1):
        draw_line(img_visualization, pts[i], pts[i + 1])

    for i in range(3, 6 - 1):
        draw_line(img_visualization, pts[i], pts[i + 1])

    for i in range(6, 10 - 1):
        draw_line(img_visualization, pts[i], pts[i + 1])

    draw_line(img_visualization, pts[2], pts[3])
    draw_line(img_visualization, pts[12], pts[13])

    return img_visualization / 255.0

def draw_line(img, pt1, pt2):
    if pt1[0] != 0 and pt1[1] != 0 and pt2[0] != 0 and pt2[1] != 0:
        cv2.line(img, (int(pt1[0]), int(pt1[1])), (int(pt2[0]), int(pt2[1])), color=(57, 255, 20), thickness=2)