Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. | |
""" | |
from typing import Optional, Tuple | |
import torch | |
from einops import rearrange | |
from torch import nn | |
from torchvision import transforms | |
from enum import Enum | |
import logging | |
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm | |
from .blocks import ( | |
FinalLayer, | |
GeneralDITTransformerBlock, | |
PatchEmbed, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from .position_embedding import LearnablePosEmbAxis, VideoRopePosition3DEmb | |
class DataType(Enum): | |
IMAGE = "image" | |
VIDEO = "video" | |
class GeneralDIT(nn.Module): | |
""" | |
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. | |
Args: | |
max_img_h (int): Maximum height of the input images. | |
max_img_w (int): Maximum width of the input images. | |
max_frames (int): Maximum number of frames in the video sequence. | |
in_channels (int): Number of input channels (e.g., RGB channels for color images). | |
out_channels (int): Number of output channels. | |
patch_spatial (tuple): Spatial resolution of patches for input processing. | |
patch_temporal (int): Temporal resolution of patches for input processing. | |
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding. | |
block_config (str): Configuration of the transformer block. See Notes for supported block types. | |
model_channels (int): Base number of channels used throughout the model. | |
num_blocks (int): Number of transformer blocks. | |
num_heads (int): Number of heads in the multi-head attention layers. | |
mlp_ratio (float): Expansion ratio for MLP blocks. | |
block_x_format (str): Format of input tensor for transformer blocks ('BTHWD' or 'THWBD'). | |
crossattn_emb_channels (int): Number of embedding channels for cross-attention. | |
use_cross_attn_mask (bool): Whether to use mask in cross-attention. | |
pos_emb_cls (str): Type of positional embeddings. | |
pos_emb_learnable (bool): Whether positional embeddings are learnable. | |
pos_emb_interpolation (str): Method for interpolating positional embeddings. | |
affline_emb_norm (bool): Whether to normalize affine embeddings. | |
use_adaln_lora (bool): Whether to use AdaLN-LoRA. | |
adaln_lora_dim (int): Dimension for AdaLN-LoRA. | |
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE. | |
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE. | |
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE. | |
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings. | |
extra_per_block_abs_pos_emb_type (str): Type of extra per-block positional embeddings. | |
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings. | |
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings. | |
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings. | |
Notes: | |
Supported block types in block_config: | |
* cross_attn, ca: Cross attention | |
* full_attn: Full attention on all flattened tokens | |
* mlp, ff: Feed forward block | |
""" | |
def __init__( | |
self, | |
max_img_h: int, | |
max_img_w: int, | |
max_frames: int, | |
in_channels: int, | |
out_channels: int, | |
patch_spatial: tuple, | |
patch_temporal: int, | |
concat_padding_mask: bool = True, | |
# attention settings | |
block_config: str = "FA-CA-MLP", | |
model_channels: int = 768, | |
num_blocks: int = 10, | |
num_heads: int = 16, | |
mlp_ratio: float = 4.0, | |
block_x_format: str = "BTHWD", | |
# cross attention settings | |
crossattn_emb_channels: int = 1024, | |
use_cross_attn_mask: bool = False, | |
# positional embedding settings | |
pos_emb_cls: str = "sincos", | |
pos_emb_learnable: bool = False, | |
pos_emb_interpolation: str = "crop", | |
affline_emb_norm: bool = False, # whether or not to normalize the affine embedding | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
rope_h_extrapolation_ratio: float = 1.0, | |
rope_w_extrapolation_ratio: float = 1.0, | |
rope_t_extrapolation_ratio: float = 1.0, | |
extra_per_block_abs_pos_emb: bool = False, | |
extra_per_block_abs_pos_emb_type: str = "sincos", | |
extra_h_extrapolation_ratio: float = 1.0, | |
extra_w_extrapolation_ratio: float = 1.0, | |
extra_t_extrapolation_ratio: float = 1.0, | |
image_model=None, | |
device=None, | |
dtype=None, | |
operations=None, | |
) -> None: | |
super().__init__() | |
self.max_img_h = max_img_h | |
self.max_img_w = max_img_w | |
self.max_frames = max_frames | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.patch_spatial = patch_spatial | |
self.patch_temporal = patch_temporal | |
self.num_heads = num_heads | |
self.num_blocks = num_blocks | |
self.model_channels = model_channels | |
self.use_cross_attn_mask = use_cross_attn_mask | |
self.concat_padding_mask = concat_padding_mask | |
# positional embedding settings | |
self.pos_emb_cls = pos_emb_cls | |
self.pos_emb_learnable = pos_emb_learnable | |
self.pos_emb_interpolation = pos_emb_interpolation | |
self.affline_emb_norm = affline_emb_norm | |
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio | |
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio | |
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio | |
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb | |
self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower() | |
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio | |
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio | |
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio | |
self.dtype = dtype | |
weight_args = {"device": device, "dtype": dtype} | |
in_channels = in_channels + 1 if concat_padding_mask else in_channels | |
self.x_embedder = PatchEmbed( | |
spatial_patch_size=patch_spatial, | |
temporal_patch_size=patch_temporal, | |
in_channels=in_channels, | |
out_channels=model_channels, | |
bias=False, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
self.build_pos_embed(device=device, dtype=dtype) | |
self.block_x_format = block_x_format | |
self.use_adaln_lora = use_adaln_lora | |
self.adaln_lora_dim = adaln_lora_dim | |
self.t_embedder = nn.ModuleList( | |
[Timesteps(model_channels), | |
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, weight_args=weight_args, operations=operations),] | |
) | |
self.blocks = nn.ModuleDict() | |
for idx in range(num_blocks): | |
self.blocks[f"block{idx}"] = GeneralDITTransformerBlock( | |
x_dim=model_channels, | |
context_dim=crossattn_emb_channels, | |
num_heads=num_heads, | |
block_config=block_config, | |
mlp_ratio=mlp_ratio, | |
x_format=self.block_x_format, | |
use_adaln_lora=use_adaln_lora, | |
adaln_lora_dim=adaln_lora_dim, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
if self.affline_emb_norm: | |
logging.debug("Building affine embedding normalization layer") | |
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6) | |
else: | |
self.affline_norm = nn.Identity() | |
self.final_layer = FinalLayer( | |
hidden_size=self.model_channels, | |
spatial_patch_size=self.patch_spatial, | |
temporal_patch_size=self.patch_temporal, | |
out_channels=self.out_channels, | |
use_adaln_lora=self.use_adaln_lora, | |
adaln_lora_dim=self.adaln_lora_dim, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
def build_pos_embed(self, device=None, dtype=None): | |
if self.pos_emb_cls == "rope3d": | |
cls_type = VideoRopePosition3DEmb | |
else: | |
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}") | |
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}") | |
kwargs = dict( | |
model_channels=self.model_channels, | |
len_h=self.max_img_h // self.patch_spatial, | |
len_w=self.max_img_w // self.patch_spatial, | |
len_t=self.max_frames // self.patch_temporal, | |
is_learnable=self.pos_emb_learnable, | |
interpolation=self.pos_emb_interpolation, | |
head_dim=self.model_channels // self.num_heads, | |
h_extrapolation_ratio=self.rope_h_extrapolation_ratio, | |
w_extrapolation_ratio=self.rope_w_extrapolation_ratio, | |
t_extrapolation_ratio=self.rope_t_extrapolation_ratio, | |
device=device, | |
) | |
self.pos_embedder = cls_type( | |
**kwargs, | |
) | |
if self.extra_per_block_abs_pos_emb: | |
assert self.extra_per_block_abs_pos_emb_type in [ | |
"learnable", | |
], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}" | |
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio | |
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio | |
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio | |
kwargs["device"] = device | |
kwargs["dtype"] = dtype | |
self.extra_pos_embedder = LearnablePosEmbAxis( | |
**kwargs, | |
) | |
def prepare_embedded_sequence( | |
self, | |
x_B_C_T_H_W: torch.Tensor, | |
fps: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
""" | |
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks. | |
Args: | |
x_B_C_T_H_W (torch.Tensor): video | |
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required. | |
If None, a default value (`self.base_fps`) will be used. | |
padding_mask (Optional[torch.Tensor]): current it is not used | |
Returns: | |
Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
- A tensor of shape (B, T, H, W, D) with the embedded sequence. | |
- An optional positional embedding tensor, returned only if the positional embedding class | |
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None. | |
Notes: | |
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor. | |
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`. | |
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using | |
the `self.pos_embedder` with the shape [T, H, W]. | |
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the | |
`self.pos_embedder` with the fps tensor. | |
- Otherwise, the positional embeddings are generated without considering fps. | |
""" | |
if self.concat_padding_mask: | |
if padding_mask is not None: | |
padding_mask = transforms.functional.resize( | |
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST | |
) | |
else: | |
padding_mask = torch.zeros((x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[-2], x_B_C_T_H_W.shape[-1]), dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device) | |
x_B_C_T_H_W = torch.cat( | |
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1 | |
) | |
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W) | |
if self.extra_per_block_abs_pos_emb: | |
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype) | |
else: | |
extra_pos_emb = None | |
if "rope" in self.pos_emb_cls.lower(): | |
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb | |
if "fps_aware" in self.pos_emb_cls: | |
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device) # [B, T, H, W, D] | |
else: | |
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D] | |
return x_B_T_H_W_D, None, extra_pos_emb | |
def decoder_head( | |
self, | |
x_B_T_H_W_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
origin_shape: Tuple[int, int, int, int, int], # [B, C, T, H, W] | |
crossattn_mask: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
del crossattn_emb, crossattn_mask | |
B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape | |
x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D") | |
x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D) | |
# This is to ensure x_BT_HW_D has the correct shape because | |
# when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D). | |
x_BT_HW_D = x_BT_HW_D.view( | |
B * T_before_patchify // self.patch_temporal, | |
H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial, | |
-1, | |
) | |
x_B_D_T_H_W = rearrange( | |
x_BT_HW_D, | |
"(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)", | |
p1=self.patch_spatial, | |
p2=self.patch_spatial, | |
H=H_before_patchify // self.patch_spatial, | |
W=W_before_patchify // self.patch_spatial, | |
t=self.patch_temporal, | |
B=B, | |
) | |
return x_B_D_T_H_W | |
def forward_before_blocks( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: (B, C, T, H, W) tensor of spatial-temp inputs | |
timesteps: (B, ) tensor of timesteps | |
crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
crossattn_mask: (B, N) tensor of cross-attention masks | |
""" | |
del kwargs | |
assert isinstance( | |
data_type, DataType | |
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." | |
original_shape = x.shape | |
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( | |
x, | |
fps=fps, | |
padding_mask=padding_mask, | |
latent_condition=latent_condition, | |
latent_condition_sigma=latent_condition_sigma, | |
) | |
# logging affline scale information | |
affline_scale_log_info = {} | |
timesteps_B_D, adaln_lora_B_3D = self.t_embedder[1](self.t_embedder[0](timesteps.flatten()).to(x.dtype)) | |
affline_emb_B_D = timesteps_B_D | |
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() | |
if scalar_feature is not None: | |
raise NotImplementedError("Scalar feature is not implemented yet.") | |
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() | |
affline_emb_B_D = self.affline_norm(affline_emb_B_D) | |
if self.use_cross_attn_mask: | |
if crossattn_mask is not None and not torch.is_floating_point(crossattn_mask): | |
crossattn_mask = (crossattn_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max | |
crossattn_mask = crossattn_mask[:, None, None, :] # .to(dtype=torch.bool) # [B, 1, 1, length] | |
else: | |
crossattn_mask = None | |
if self.blocks["block0"].x_format == "THWBD": | |
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" | |
) | |
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") | |
if crossattn_mask: | |
crossattn_mask = rearrange(crossattn_mask, "B M -> M B") | |
elif self.blocks["block0"].x_format == "BTHWD": | |
x = x_B_T_H_W_D | |
else: | |
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") | |
output = { | |
"x": x, | |
"affline_emb_B_D": affline_emb_B_D, | |
"crossattn_emb": crossattn_emb, | |
"crossattn_mask": crossattn_mask, | |
"rope_emb_L_1_1_D": rope_emb_L_1_1_D, | |
"adaln_lora_B_3D": adaln_lora_B_3D, | |
"original_shape": original_shape, | |
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
} | |
return output | |
def forward( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
context: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
# crossattn_emb: torch.Tensor, | |
# crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
**kwargs, | |
): | |
""" | |
Args: | |
x: (B, C, T, H, W) tensor of spatial-temp inputs | |
timesteps: (B, ) tensor of timesteps | |
crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
crossattn_mask: (B, N) tensor of cross-attention masks | |
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to | |
augment condition input, the lvg model will condition on the condition_video_augment_sigma value; | |
we need forward_before_blocks pass to the forward_before_blocks function. | |
""" | |
crossattn_emb = context | |
crossattn_mask = attention_mask | |
inputs = self.forward_before_blocks( | |
x=x, | |
timesteps=timesteps, | |
crossattn_emb=crossattn_emb, | |
crossattn_mask=crossattn_mask, | |
fps=fps, | |
image_size=image_size, | |
padding_mask=padding_mask, | |
scalar_feature=scalar_feature, | |
data_type=data_type, | |
latent_condition=latent_condition, | |
latent_condition_sigma=latent_condition_sigma, | |
condition_video_augment_sigma=condition_video_augment_sigma, | |
**kwargs, | |
) | |
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = ( | |
inputs["x"], | |
inputs["affline_emb_B_D"], | |
inputs["crossattn_emb"], | |
inputs["crossattn_mask"], | |
inputs["rope_emb_L_1_1_D"], | |
inputs["adaln_lora_B_3D"], | |
inputs["original_shape"], | |
) | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"].to(x.dtype) | |
del inputs | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
assert ( | |
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape | |
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}" | |
for _, block in self.blocks.items(): | |
assert ( | |
self.blocks["block0"].x_format == block.x_format | |
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}" | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
x += extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D | |
x = block( | |
x, | |
affline_emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
adaln_lora_B_3D=adaln_lora_B_3D, | |
) | |
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D") | |
x_B_D_T_H_W = self.decoder_head( | |
x_B_T_H_W_D=x_B_T_H_W_D, | |
emb_B_D=affline_emb_B_D, | |
crossattn_emb=None, | |
origin_shape=original_shape, | |
crossattn_mask=None, | |
adaln_lora_B_3D=adaln_lora_B_3D, | |
) | |
return x_B_D_T_H_W | |