Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The patcher and unpatcher implementation for 2D and 3D data. | |
The idea of Haar wavelet is to compute LL, LH, HL, HH component as two 1D convolutions. | |
One on the rows and one on the columns. | |
For example, in 1D signal, we have [a, b], then the low-freq compoenent is [a + b] / 2 and high-freq is [a - b] / 2. | |
We can use a 1D convolution with kernel [1, 1] and stride 2 to represent the L component. | |
For H component, we can use a 1D convolution with kernel [1, -1] and stride 2. | |
Although in principle, we typically only do additional Haar wavelet over the LL component. But here we do it for all | |
as we need to support downsampling for more than 2x. | |
For example, 4x downsampling can be done by 2x Haar and additional 2x Haar, and the shape would be. | |
[3, 256, 256] -> [12, 128, 128] -> [48, 64, 64] | |
""" | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
_WAVELETS = { | |
"haar": torch.tensor([0.7071067811865476, 0.7071067811865476]), | |
"rearrange": torch.tensor([1.0, 1.0]), | |
} | |
_PERSISTENT = False | |
class Patcher(torch.nn.Module): | |
"""A module to convert image tensors into patches using torch operations. | |
The main difference from `class Patching` is that this module implements | |
all operations using torch, rather than python or numpy, for efficiency purpose. | |
It's bit-wise identical to the Patching module outputs, with the added | |
benefit of being torch.jit scriptable. | |
""" | |
def __init__(self, patch_size=1, patch_method="haar"): | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_method = patch_method | |
self.register_buffer( | |
"wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT | |
) | |
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item())) | |
self.register_buffer( | |
"_arange", | |
torch.arange(_WAVELETS[patch_method].shape[0]), | |
persistent=_PERSISTENT, | |
) | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
if self.patch_method == "haar": | |
return self._haar(x) | |
elif self.patch_method == "rearrange": | |
return self._arrange(x) | |
else: | |
raise ValueError("Unknown patch method: " + self.patch_method) | |
def _dwt(self, x, mode="reflect", rescale=False): | |
dtype = x.dtype | |
h = self.wavelets.to(device=x.device) | |
n = h.shape[0] | |
g = x.shape[1] | |
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1) | |
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1) | |
hh = hh.to(dtype=dtype) | |
hl = hl.to(dtype=dtype) | |
x = F.pad(x, pad=(n - 2, n - 1, n - 2, n - 1), mode=mode).to(dtype) | |
xl = F.conv2d(x, hl.unsqueeze(2), groups=g, stride=(1, 2)) | |
xh = F.conv2d(x, hh.unsqueeze(2), groups=g, stride=(1, 2)) | |
xll = F.conv2d(xl, hl.unsqueeze(3), groups=g, stride=(2, 1)) | |
xlh = F.conv2d(xl, hh.unsqueeze(3), groups=g, stride=(2, 1)) | |
xhl = F.conv2d(xh, hl.unsqueeze(3), groups=g, stride=(2, 1)) | |
xhh = F.conv2d(xh, hh.unsqueeze(3), groups=g, stride=(2, 1)) | |
out = torch.cat([xll, xlh, xhl, xhh], dim=1) | |
if rescale: | |
out = out / 2 | |
return out | |
def _haar(self, x): | |
for _ in self.range: | |
x = self._dwt(x, rescale=True) | |
return x | |
def _arrange(self, x): | |
x = rearrange( | |
x, | |
"b c (h p1) (w p2) -> b (c p1 p2) h w", | |
p1=self.patch_size, | |
p2=self.patch_size, | |
).contiguous() | |
return x | |
class Patcher3D(Patcher): | |
"""A 3D discrete wavelet transform for video data, expects 5D tensor, i.e. a batch of videos.""" | |
def __init__(self, patch_size=1, patch_method="haar"): | |
super().__init__(patch_method=patch_method, patch_size=patch_size) | |
self.register_buffer( | |
"patch_size_buffer", | |
patch_size * torch.ones([1], dtype=torch.int32), | |
persistent=_PERSISTENT, | |
) | |
def _dwt(self, x, wavelet, mode="reflect", rescale=False): | |
dtype = x.dtype | |
h = self.wavelets.to(device=x.device) | |
n = h.shape[0] | |
g = x.shape[1] | |
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1) | |
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1) | |
hh = hh.to(dtype=dtype) | |
hl = hl.to(dtype=dtype) | |
# Handles temporal axis. | |
x = F.pad( | |
x, pad=(max(0, n - 2), n - 1, n - 2, n - 1, n - 2, n - 1), mode=mode | |
).to(dtype) | |
xl = F.conv3d(x, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1)) | |
xh = F.conv3d(x, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1)) | |
# Handles spatial axes. | |
xll = F.conv3d(xl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) | |
xlh = F.conv3d(xl, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) | |
xhl = F.conv3d(xh, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) | |
xhh = F.conv3d(xh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) | |
xlll = F.conv3d(xll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xllh = F.conv3d(xll, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xlhl = F.conv3d(xlh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xlhh = F.conv3d(xlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xhll = F.conv3d(xhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xhlh = F.conv3d(xhl, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xhhl = F.conv3d(xhh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
xhhh = F.conv3d(xhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) | |
out = torch.cat([xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh], dim=1) | |
if rescale: | |
out = out / (2 * torch.sqrt(torch.tensor(2.0))) | |
return out | |
def _haar(self, x): | |
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2) | |
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2) | |
for _ in self.range: | |
x = self._dwt(x, "haar", rescale=True) | |
return x | |
def _arrange(self, x): | |
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2) | |
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2) | |
x = rearrange( | |
x, | |
"b c (t p1) (h p2) (w p3) -> b (c p1 p2 p3) t h w", | |
p1=self.patch_size, | |
p2=self.patch_size, | |
p3=self.patch_size, | |
).contiguous() | |
return x | |
class UnPatcher(torch.nn.Module): | |
"""A module to convert patches into image tensorsusing torch operations. | |
The main difference from `class Unpatching` is that this module implements | |
all operations using torch, rather than python or numpy, for efficiency purpose. | |
It's bit-wise identical to the Unpatching module outputs, with the added | |
benefit of being torch.jit scriptable. | |
""" | |
def __init__(self, patch_size=1, patch_method="haar"): | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_method = patch_method | |
self.register_buffer( | |
"wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT | |
) | |
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item())) | |
self.register_buffer( | |
"_arange", | |
torch.arange(_WAVELETS[patch_method].shape[0]), | |
persistent=_PERSISTENT, | |
) | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
if self.patch_method == "haar": | |
return self._ihaar(x) | |
elif self.patch_method == "rearrange": | |
return self._iarrange(x) | |
else: | |
raise ValueError("Unknown patch method: " + self.patch_method) | |
def _idwt(self, x, wavelet="haar", mode="reflect", rescale=False): | |
dtype = x.dtype | |
h = self.wavelets.to(device=x.device) | |
n = h.shape[0] | |
g = x.shape[1] // 4 | |
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1]) | |
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1) | |
hh = hh.to(dtype=dtype) | |
hl = hl.to(dtype=dtype) | |
xll, xlh, xhl, xhh = torch.chunk(x.to(dtype), 4, dim=1) | |
# Inverse transform. | |
yl = torch.nn.functional.conv_transpose2d( | |
xll, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0) | |
) | |
yl += torch.nn.functional.conv_transpose2d( | |
xlh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0) | |
) | |
yh = torch.nn.functional.conv_transpose2d( | |
xhl, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0) | |
) | |
yh += torch.nn.functional.conv_transpose2d( | |
xhh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0) | |
) | |
y = torch.nn.functional.conv_transpose2d( | |
yl, hl.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2) | |
) | |
y += torch.nn.functional.conv_transpose2d( | |
yh, hh.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2) | |
) | |
if rescale: | |
y = y * 2 | |
return y | |
def _ihaar(self, x): | |
for _ in self.range: | |
x = self._idwt(x, "haar", rescale=True) | |
return x | |
def _iarrange(self, x): | |
x = rearrange( | |
x, | |
"b (c p1 p2) h w -> b c (h p1) (w p2)", | |
p1=self.patch_size, | |
p2=self.patch_size, | |
) | |
return x | |
class UnPatcher3D(UnPatcher): | |
"""A 3D inverse discrete wavelet transform for video wavelet decompositions.""" | |
def __init__(self, patch_size=1, patch_method="haar"): | |
super().__init__(patch_method=patch_method, patch_size=patch_size) | |
def _idwt(self, x, wavelet="haar", mode="reflect", rescale=False): | |
dtype = x.dtype | |
h = self.wavelets.to(device=x.device) | |
g = x.shape[1] // 8 # split into 8 spatio-temporal filtered tesnors. | |
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1]) | |
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1) | |
hl = hl.to(dtype=dtype) | |
hh = hh.to(dtype=dtype) | |
xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh = torch.chunk(x, 8, dim=1) | |
del x | |
# Height height transposed convolutions. | |
xll = F.conv_transpose3d( | |
xlll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xlll | |
xll += F.conv_transpose3d( | |
xllh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xllh | |
xlh = F.conv_transpose3d( | |
xlhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xlhl | |
xlh += F.conv_transpose3d( | |
xlhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xlhh | |
xhl = F.conv_transpose3d( | |
xhll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xhll | |
xhl += F.conv_transpose3d( | |
xhlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xhlh | |
xhh = F.conv_transpose3d( | |
xhhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xhhl | |
xhh += F.conv_transpose3d( | |
xhhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2) | |
) | |
del xhhh | |
# Handles width transposed convolutions. | |
xl = F.conv_transpose3d( | |
xll, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1) | |
) | |
del xll | |
xl += F.conv_transpose3d( | |
xlh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1) | |
) | |
del xlh | |
xh = F.conv_transpose3d( | |
xhl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1) | |
) | |
del xhl | |
xh += F.conv_transpose3d( | |
xhh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1) | |
) | |
del xhh | |
# Handles time axis transposed convolutions. | |
x = F.conv_transpose3d( | |
xl, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1) | |
) | |
del xl | |
x += F.conv_transpose3d( | |
xh, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1) | |
) | |
if rescale: | |
x = x * (2 * torch.sqrt(torch.tensor(2.0))) | |
return x | |
def _ihaar(self, x): | |
for _ in self.range: | |
x = self._idwt(x, "haar", rescale=True) | |
x = x[:, :, self.patch_size - 1 :, ...] | |
return x | |
def _iarrange(self, x): | |
x = rearrange( | |
x, | |
"b (c p1 p2 p3) t h w -> b c (t p1) (h p2) (w p3)", | |
p1=self.patch_size, | |
p2=self.patch_size, | |
p3=self.patch_size, | |
) | |
x = x[:, :, self.patch_size - 1 :, ...] | |
return x | |