Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional | |
import logging | |
import numpy as np | |
import torch | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
from torch import nn | |
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm | |
from comfy.ldm.modules.attention import optimized_attention | |
def apply_rotary_pos_emb( | |
t: torch.Tensor, | |
freqs: torch.Tensor, | |
) -> torch.Tensor: | |
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float() | |
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1] | |
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t) | |
return t_out | |
def get_normalization(name: str, channels: int, weight_args={}): | |
if name == "I": | |
return nn.Identity() | |
elif name == "R": | |
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args) | |
else: | |
raise ValueError(f"Normalization {name} not found") | |
class BaseAttentionOp(nn.Module): | |
def __init__(self): | |
super().__init__() | |
class Attention(nn.Module): | |
""" | |
Generalized attention impl. | |
Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided. | |
If `context_dim` is None, self-attention is assumed. | |
Parameters: | |
query_dim (int): Dimension of each query vector. | |
context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed. | |
heads (int, optional): Number of attention heads. Defaults to 8. | |
dim_head (int, optional): Dimension of each head. Defaults to 64. | |
dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0. | |
attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default. | |
qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False. | |
out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False. | |
qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections. | |
Defaults to "SSI". | |
qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections. | |
Defaults to 'per_head'. Only support 'per_head'. | |
Examples: | |
>>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1) | |
>>> query = torch.randn(10, 128) # Batch size of 10 | |
>>> context = torch.randn(10, 256) # Batch size of 10 | |
>>> output = attn(query, context) # Perform the attention operation | |
Note: | |
https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0.0, | |
attn_op: Optional[BaseAttentionOp] = None, | |
qkv_bias: bool = False, | |
out_bias: bool = False, | |
qkv_norm: str = "SSI", | |
qkv_norm_mode: str = "per_head", | |
backend: str = "transformer_engine", | |
qkv_format: str = "bshd", | |
weight_args={}, | |
operations=None, | |
) -> None: | |
super().__init__() | |
self.is_selfattn = context_dim is None # self attention | |
inner_dim = dim_head * heads | |
context_dim = query_dim if context_dim is None else context_dim | |
self.heads = heads | |
self.dim_head = dim_head | |
self.qkv_norm_mode = qkv_norm_mode | |
self.qkv_format = qkv_format | |
if self.qkv_norm_mode == "per_head": | |
norm_dim = dim_head | |
else: | |
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'") | |
self.backend = backend | |
self.to_q = nn.Sequential( | |
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args), | |
get_normalization(qkv_norm[0], norm_dim), | |
) | |
self.to_k = nn.Sequential( | |
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), | |
get_normalization(qkv_norm[1], norm_dim), | |
) | |
self.to_v = nn.Sequential( | |
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), | |
get_normalization(qkv_norm[2], norm_dim), | |
) | |
self.to_out = nn.Sequential( | |
operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args), | |
nn.Dropout(dropout), | |
) | |
def cal_qkv( | |
self, x, context=None, mask=None, rope_emb=None, **kwargs | |
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
del kwargs | |
""" | |
self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers. | |
Before 07/24/2024, these modules normalize across all heads. | |
After 07/24/2024, to support tensor parallelism and follow the common practice in the community, | |
we support to normalize per head. | |
To keep the checkpoint copatibility with the previous code, | |
we keep the nn.Sequential but call the projection and the normalization layers separately. | |
We use a flag `self.qkv_norm_mode` to control the normalization behavior. | |
The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head. | |
""" | |
if self.qkv_norm_mode == "per_head": | |
q = self.to_q[0](x) | |
context = x if context is None else context | |
k = self.to_k[0](context) | |
v = self.to_v[0](context) | |
q, k, v = map( | |
lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head), | |
(q, k, v), | |
) | |
else: | |
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'") | |
q = self.to_q[1](q) | |
k = self.to_k[1](k) | |
v = self.to_v[1](v) | |
if self.is_selfattn and rope_emb is not None: # only apply to self-attention! | |
# apply_rotary_pos_emb inlined | |
q_shape = q.shape | |
q = q.reshape(*q.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2) | |
q = rope_emb[..., 0] * q[..., 0] + rope_emb[..., 1] * q[..., 1] | |
q = q.movedim(-1, -2).reshape(*q_shape).to(x.dtype) | |
# apply_rotary_pos_emb inlined | |
k_shape = k.shape | |
k = k.reshape(*k.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2) | |
k = rope_emb[..., 0] * k[..., 0] + rope_emb[..., 1] * k[..., 1] | |
k = k.movedim(-1, -2).reshape(*k_shape).to(x.dtype) | |
return q, k, v | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
rope_emb=None, | |
**kwargs, | |
): | |
""" | |
Args: | |
x (Tensor): The query tensor of shape [B, Mq, K] | |
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None | |
""" | |
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs) | |
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True) | |
del q, k, v | |
out = rearrange(out, " b n s c -> s b (n c)") | |
return self.to_out(out) | |
class FeedForward(nn.Module): | |
""" | |
Transformer FFN with optional gating | |
Parameters: | |
d_model (int): Dimensionality of input features. | |
d_ff (int): Dimensionality of the hidden layer. | |
dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1. | |
activation (callable, optional): The activation function applied after the first linear layer. | |
Defaults to nn.ReLU(). | |
is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer. | |
Defaults to False. | |
bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True. | |
Example: | |
>>> ff = FeedForward(d_model=512, d_ff=2048) | |
>>> x = torch.randn(64, 10, 512) # Example input tensor | |
>>> output = ff(x) | |
>>> print(output.shape) # Expected shape: (64, 10, 512) | |
""" | |
def __init__( | |
self, | |
d_model: int, | |
d_ff: int, | |
dropout: float = 0.1, | |
activation=nn.ReLU(), | |
is_gated: bool = False, | |
bias: bool = False, | |
weight_args={}, | |
operations=None, | |
) -> None: | |
super().__init__() | |
self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args) | |
self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = activation | |
self.is_gated = is_gated | |
if is_gated: | |
self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args) | |
def forward(self, x: torch.Tensor): | |
g = self.activation(self.layer1(x)) | |
if self.is_gated: | |
x = g * self.linear_gate(x) | |
else: | |
x = g | |
assert self.dropout.p == 0.0, "we skip dropout" | |
return self.layer2(x) | |
class GPT2FeedForward(FeedForward): | |
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None): | |
super().__init__( | |
d_model=d_model, | |
d_ff=d_ff, | |
dropout=dropout, | |
activation=nn.GELU(), | |
is_gated=False, | |
bias=bias, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
def forward(self, x: torch.Tensor): | |
assert self.dropout.p == 0.0, "we skip dropout" | |
x = self.layer1(x) | |
x = self.activation(x) | |
x = self.layer2(x) | |
return x | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
class Timesteps(nn.Module): | |
def __init__(self, num_channels): | |
super().__init__() | |
self.num_channels = num_channels | |
def forward(self, timesteps): | |
half_dim = self.num_channels // 2 | |
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) | |
exponent = exponent / (half_dim - 0.0) | |
emb = torch.exp(exponent) | |
emb = timesteps[:, None].float() * emb[None, :] | |
sin_emb = torch.sin(emb) | |
cos_emb = torch.cos(emb) | |
emb = torch.cat([cos_emb, sin_emb], dim=-1) | |
return emb | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None): | |
super().__init__() | |
logging.debug( | |
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility." | |
) | |
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args) | |
self.activation = nn.SiLU() | |
self.use_adaln_lora = use_adaln_lora | |
if use_adaln_lora: | |
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args) | |
else: | |
self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args) | |
def forward(self, sample: torch.Tensor) -> torch.Tensor: | |
emb = self.linear_1(sample) | |
emb = self.activation(emb) | |
emb = self.linear_2(emb) | |
if self.use_adaln_lora: | |
adaln_lora_B_3D = emb | |
emb_B_D = sample | |
else: | |
emb_B_D = emb | |
adaln_lora_B_3D = None | |
return emb_B_D, adaln_lora_B_3D | |
class FourierFeatures(nn.Module): | |
""" | |
Implements a layer that generates Fourier features from input tensors, based on randomly sampled | |
frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems. | |
[B] -> [B, D] | |
Parameters: | |
num_channels (int): The number of Fourier features to generate. | |
bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1. | |
normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize | |
the variance of the features. Defaults to False. | |
Example: | |
>>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True) | |
>>> x = torch.randn(10, 256) # Example input tensor | |
>>> output = layer(x) | |
>>> print(output.shape) # Expected shape: (10, 256) | |
""" | |
def __init__(self, num_channels, bandwidth=1, normalize=False): | |
super().__init__() | |
self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True) | |
self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True) | |
self.gain = np.sqrt(2) if normalize else 1 | |
def forward(self, x, gain: float = 1.0): | |
""" | |
Apply the Fourier feature transformation to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1. | |
Returns: | |
torch.Tensor: The transformed tensor, with Fourier features applied. | |
""" | |
in_dtype = x.dtype | |
x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32)) | |
x = x.cos().mul(self.gain * gain).to(in_dtype) | |
return x | |
class PatchEmbed(nn.Module): | |
""" | |
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers, | |
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions, | |
making it suitable for video and image processing tasks. It supports dividing the input into patches | |
and embedding each patch into a vector of size `out_channels`. | |
Parameters: | |
- spatial_patch_size (int): The size of each spatial patch. | |
- temporal_patch_size (int): The size of each temporal patch. | |
- in_channels (int): Number of input channels. Default: 3. | |
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768. | |
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True. | |
""" | |
def __init__( | |
self, | |
spatial_patch_size, | |
temporal_patch_size, | |
in_channels=3, | |
out_channels=768, | |
bias=True, | |
weight_args={}, | |
operations=None, | |
): | |
super().__init__() | |
self.spatial_patch_size = spatial_patch_size | |
self.temporal_patch_size = temporal_patch_size | |
self.proj = nn.Sequential( | |
Rearrange( | |
"b c (t r) (h m) (w n) -> b t h w (c r m n)", | |
r=temporal_patch_size, | |
m=spatial_patch_size, | |
n=spatial_patch_size, | |
), | |
operations.Linear( | |
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args | |
), | |
) | |
self.out = nn.Identity() | |
def forward(self, x): | |
""" | |
Forward pass of the PatchEmbed module. | |
Parameters: | |
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where | |
B is the batch size, | |
C is the number of channels, | |
T is the temporal dimension, | |
H is the height, and | |
W is the width of the input. | |
Returns: | |
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c. | |
""" | |
assert x.dim() == 5 | |
_, _, T, H, W = x.shape | |
assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0 | |
assert T % self.temporal_patch_size == 0 | |
x = self.proj(x) | |
return self.out(x) | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of video DiT. | |
""" | |
def __init__( | |
self, | |
hidden_size, | |
spatial_patch_size, | |
temporal_patch_size, | |
out_channels, | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
weight_args={}, | |
operations=None, | |
): | |
super().__init__() | |
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args) | |
self.linear = operations.Linear( | |
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args | |
) | |
self.hidden_size = hidden_size | |
self.n_adaln_chunks = 2 | |
self.use_adaln_lora = use_adaln_lora | |
if use_adaln_lora: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args), | |
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args), | |
) | |
else: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args) | |
) | |
def forward( | |
self, | |
x_BT_HW_D, | |
emb_B_D, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
): | |
if self.use_adaln_lora: | |
assert adaln_lora_B_3D is not None | |
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( | |
2, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) | |
B = emb_B_D.shape[0] | |
T = x_BT_HW_D.shape[0] // B | |
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) | |
x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D) | |
x_BT_HW_D = self.linear(x_BT_HW_D) | |
return x_BT_HW_D | |
class VideoAttn(nn.Module): | |
""" | |
Implements video attention with optional cross-attention capabilities. | |
This module processes video features while maintaining their spatio-temporal structure. It can perform | |
self-attention within the video features or cross-attention with external context features. | |
Parameters: | |
x_dim (int): Dimension of input feature vectors | |
context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention | |
num_heads (int): Number of attention heads | |
bias (bool): Whether to include bias in attention projections. Default: False | |
qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head" | |
x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD" | |
Input shape: | |
- x: (T, H, W, B, D) video features | |
- context (optional): (M, B, D) context features for cross-attention | |
where: | |
T: temporal dimension | |
H: height | |
W: width | |
B: batch size | |
D: feature dimension | |
M: context sequence length | |
""" | |
def __init__( | |
self, | |
x_dim: int, | |
context_dim: Optional[int], | |
num_heads: int, | |
bias: bool = False, | |
qkv_norm_mode: str = "per_head", | |
x_format: str = "BTHWD", | |
weight_args={}, | |
operations=None, | |
) -> None: | |
super().__init__() | |
self.x_format = x_format | |
self.attn = Attention( | |
x_dim, | |
context_dim, | |
num_heads, | |
x_dim // num_heads, | |
qkv_bias=bias, | |
qkv_norm="RRI", | |
out_bias=bias, | |
qkv_norm_mode=qkv_norm_mode, | |
qkv_format="sbhd", | |
weight_args=weight_args, | |
operations=operations, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Forward pass for video attention. | |
Args: | |
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data. | |
context (Tensor): Context tensor of shape (B, M, D) or (M, B, D), | |
where M is the sequence length of the context. | |
crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms. | |
rope_emb_L_1_1_D (Optional[Tensor]): | |
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. | |
Returns: | |
Tensor: The output tensor with applied attention, maintaining the input shape. | |
""" | |
x_T_H_W_B_D = x | |
context_M_B_D = context | |
T, H, W, B, D = x_T_H_W_B_D.shape | |
x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d") | |
x_THW_B_D = self.attn( | |
x_THW_B_D, | |
context_M_B_D, | |
crossattn_mask, | |
rope_emb=rope_emb_L_1_1_D, | |
) | |
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W) | |
return x_T_H_W_B_D | |
def adaln_norm_state(norm_state, x, scale, shift): | |
normalized = norm_state(x) | |
return normalized * (1 + scale) + shift | |
class DITBuildingBlock(nn.Module): | |
""" | |
A building block for the DiT (Diffusion Transformer) architecture that supports different types of | |
attention and MLP operations with adaptive layer normalization. | |
Parameters: | |
block_type (str): Type of block - one of: | |
- "cross_attn"/"ca": Cross-attention | |
- "full_attn"/"fa": Full self-attention | |
- "mlp"/"ff": MLP/feedforward block | |
x_dim (int): Dimension of input features | |
context_dim (Optional[int]): Dimension of context features for cross-attention | |
num_heads (int): Number of attention heads | |
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0 | |
bias (bool): Whether to use bias in layers. Default: False | |
mlp_dropout (float): Dropout rate for MLP. Default: 0.0 | |
qkv_norm_mode (str): QKV normalization mode. Default: "per_head" | |
x_format (str): Input tensor format. Default: "BTHWD" | |
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False | |
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256 | |
""" | |
def __init__( | |
self, | |
block_type: str, | |
x_dim: int, | |
context_dim: Optional[int], | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
bias: bool = False, | |
mlp_dropout: float = 0.0, | |
qkv_norm_mode: str = "per_head", | |
x_format: str = "BTHWD", | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
weight_args={}, | |
operations=None | |
) -> None: | |
block_type = block_type.lower() | |
super().__init__() | |
self.x_format = x_format | |
if block_type in ["cross_attn", "ca"]: | |
self.block = VideoAttn( | |
x_dim, | |
context_dim, | |
num_heads, | |
bias=bias, | |
qkv_norm_mode=qkv_norm_mode, | |
x_format=self.x_format, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
elif block_type in ["full_attn", "fa"]: | |
self.block = VideoAttn( | |
x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations | |
) | |
elif block_type in ["mlp", "ff"]: | |
self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations) | |
else: | |
raise ValueError(f"Unknown block type: {block_type}") | |
self.block_type = block_type | |
self.use_adaln_lora = use_adaln_lora | |
self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6) | |
self.n_adaln_chunks = 3 | |
if use_adaln_lora: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args), | |
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args), | |
) | |
else: | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args)) | |
def forward( | |
self, | |
x: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Forward pass for dynamically configured blocks with adaptive normalization. | |
Args: | |
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D). | |
emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation. | |
crossattn_emb (Tensor): Tensor for cross-attention blocks. | |
crossattn_mask (Optional[Tensor]): Optional mask for cross-attention. | |
rope_emb_L_1_1_D (Optional[Tensor]): | |
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. | |
Returns: | |
Tensor: The output tensor after processing through the configured block and adaptive normalization. | |
""" | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = ( | |
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
) | |
if self.block_type in ["mlp", "ff"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), | |
) | |
elif self.block_type in ["full_attn", "fa"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), | |
context=None, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
elif self.block_type in ["cross_attn", "ca"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), | |
context=crossattn_emb, | |
crossattn_mask=crossattn_mask, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
else: | |
raise ValueError(f"Unknown block type: {self.block_type}") | |
return x | |
class GeneralDITTransformerBlock(nn.Module): | |
""" | |
A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer. | |
Each block in the sequence is specified by a block configuration string. | |
Parameters: | |
x_dim (int): Dimension of input features | |
context_dim (int): Dimension of context features for cross-attention blocks | |
num_heads (int): Number of attention heads | |
block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention, | |
full-attention, then MLP) | |
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0 | |
x_format (str): Input tensor format. Default: "BTHWD" | |
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False | |
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256 | |
The block_config string uses "-" to separate block types: | |
- "ca"/"cross_attn": Cross-attention block | |
- "fa"/"full_attn": Full self-attention block | |
- "mlp"/"ff": MLP/feedforward block | |
Example: | |
block_config = "ca-fa-mlp" creates a sequence of: | |
1. Cross-attention block | |
2. Full self-attention block | |
3. MLP block | |
""" | |
def __init__( | |
self, | |
x_dim: int, | |
context_dim: int, | |
num_heads: int, | |
block_config: str, | |
mlp_ratio: float = 4.0, | |
x_format: str = "BTHWD", | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
weight_args={}, | |
operations=None | |
): | |
super().__init__() | |
self.blocks = nn.ModuleList() | |
self.x_format = x_format | |
for block_type in block_config.split("-"): | |
self.blocks.append( | |
DITBuildingBlock( | |
block_type, | |
x_dim, | |
context_dim, | |
num_heads, | |
mlp_ratio, | |
x_format=self.x_format, | |
use_adaln_lora=use_adaln_lora, | |
adaln_lora_dim=adaln_lora_dim, | |
weight_args=weight_args, | |
operations=operations, | |
) | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
for block in self.blocks: | |
x = block( | |
x, | |
emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
adaln_lora_B_3D=adaln_lora_B_3D, | |
) | |
return x | |