File size: 28,020 Bytes
f3c73fd
 
 
 
 
 
 
 
ed581c9
f3c73fd
 
ed581c9
 
 
 
 
 
 
 
 
f3c73fd
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c73fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
f3c73fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
 
 
 
 
 
 
 
 
 
f3c73fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed581c9
 
 
 
7818025
 
 
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5931001
 
 
 
ed581c9
5931001
ed581c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c73fd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import numpy as np
import pandas as pd
import os
import pickle
import time
from contextlib import contextmanager
from importlib import reload
import re
from project_tools import project_config, project_utils, numerapi_utils
import glob
import matplotlib.pyplot as plt
import seaborn as sns
from random import randint, random
import itertools
import scipy
from scipy.stats import ks_2samp
from sklearn.metrics import log_loss, roc_auc_score, accuracy_score, mean_squared_error
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn import linear_model
import datetime
import json
from collections import OrderedDict
from os import listdir
from os.path import isfile, join, isdir
import glob
import numerapi
import itertools
import io
import requests
from pathlib import Path
from scipy.stats.mstats import gmean
from typing import List, Dict


napi = numerapi.NumerAPI() #verbosity="info")


def get_time_string():
    """
    Generate a time string representation of the time of call of this function.
    :param None
    :return: a string that represent the time of the functional call.
    """
    now = datetime.datetime.now()
    now = str(now.strftime('%Y%m%d%H%M'))
    return now


def reload_project():
    """
    utility function used during experimentation to reload various model when required, useful for quick experiment iteration
    :return: None
    """
    reload(project_config)
    reload(project_utils)
    reload(numerapi_utils)

@contextmanager
def timer(name):
    """
    utility timer function to check how long a piece of code might take to run.
    :param name: name of the code fragment to be timed
    :yield: time taken for the code to run
    """
    t0 = time.time()
    print('[%s] in progress' % name)
    yield
    print('[%s] done in %.6f s' %(name, time.time() - t0))



def load_data(pickle_file):
    """
    load pickle data from file
    :param pickle_file: path of pickle data
    :return: data stored in pickle file
    """
    load_file = open(pickle_file, 'rb')
    data = pickle.load(load_file)
    return data


def pickle_data(path, data, protocol=-1, timestamp=False, verbose=True):
    """
    Pickle data to specified file
    :param path: full path of file where data will be pickled to
    :param data: data to be pickled
    :param protocol: pickle protocol, -1 indicate to use the latest protocol
    :return: None
    """
    file = path
    if timestamp:
        base_file = os.path.splitext(file)[0]
        time_str = '_' + get_time_string()
        ext = os.path.splitext(os.path.basename(file))[1]
        file = base_file + time_str + ext

    if verbose:
        print('creating file %s' % file)

    save_file = open(file, 'wb')
    pickle.dump(data, save_file, protocol=protocol)
    save_file.close()


def save_json(path, data, timestamp=False, verbose=True, indent=2):
    """
    Save data to Json format
    :param path: full path of file where data will be pickled to
    :param data: data to be pickled
    :param timestamp: if true, the timestamp will be saved as part of the file name
    :param verbose: if true, print information about file creation
    :param indent: specify the width of the indent in the resulted Json file
    :return: None
    """
    file = path
    if timestamp:
        base_file = os.path.splitext(file)[0]
        time_str = '_' + get_time_string()
        ext = os.path.splitext(os.path.basename(file))[1]
        file = base_file + time_str + ext
    if verbose:
        print('creating file %s' % file)
    outfile = open(file, 'w')
    json.dump(data, outfile, indent=indent)
    outfile.close()


def load_json(json_file):
    """
    load data from Json file
    :param json_file: path of json file
    :return: data stored in json file as python dictionary
    """
    load_file = open(json_file)
    data = json.load(load_file)
    load_file.close()
    return data


def create_folder(path):
    Path(path).mkdir(parents=True, exist_ok=True)



def glob_folder_filelist(path, file_type='', recursive=True):
    """
    utility function that walk through a given directory, and return list of files in the directory
    :param path: the path of the directory
    :param file_type: if not '', this function would only consider the file type specified by this parameter
    :param recursive: if True, perform directory walk-fhrough recursively
    :return absfile: a list containing absolute path of each file in the directory
    :return base_files: a list containing base name of each file in the directory
    """
    if path[-1] != '/':
        path = path +'/'
    abs_files = []
    base_files = []
    patrn = '**' if recursive else '*'
    glob_path = path + patrn
    matches = glob.glob(glob_path, recursive=recursive)
    for f in matches:
        if os.path.isfile(f):
            include = True
            if len(file_type)>0:
                ext = os.path.splitext(f)[1]
                if ext[1:] != file_type:
                    include = False
            if include:
                abs_files.append(f)
                base_files.append(os.path.basename(f))
    return abs_files, base_files


def dir_compare(pathl, pathr):
    files_pathl = set([f for f in listdir(pathl) if isfile(join(pathl, f))])
    files_pathr = set([f for f in listdir(pathr) if isfile(join(pathr, f))])
    return list(files_pathl-files_pathr), list(files_pathr-files_pathl)




def lr_dir_sync(pathl, pathr):
    files_lrddiff, files_rldiff = project_utils.dir_compare(pathl, pathr)
    for f in files_lrddiff:
        scr = pathl + f
        dst = pathr + f
        print('copying file %s' % scr)
        copyfile(scr, dst)



def copy_file_with_time(src_file, dst_file_name, des_path):
    basename = os.path.splitext(os.path.basename(dst_file_name))[0]
    ext_name = os.path.splitext(os.path.basename(dst_file_name))[1]
    timestr = get_time_string()
    des_name = '%s%s_%s%s' % (des_path, basename, timestr, ext_name)
    # print(des_name)
    copyfile(src_file, des_name)





def find_filesfromfolder(target_dir, containtext):
    absnames, basenames = glob_folder_filelist(target_dir)
    result_filelist = []
    for absname, basename in zip(absnames, basenames):
        if containtext in basename:
            result_filelist.append(absname)
    # result_filelist = [f for f in total_filelist if containtext in f]
    return result_filelist


def cp_files_with_prefix(src_path, dst_path, prefix, ext):
    abs_file_list, base_file_list = get_folder_filelist(src_path, file_type=ext)
#     print(abs_file_list)
    for src_file, base_file in zip(abs_file_list, base_file_list):
        dst_file = dst_path + prefix + base_file
        copyfile(src_file, dst_file)
    return None



def mv_files_with_prefix(src_path, dst_path, prefix, ext):
    abs_file_list, base_file_list = get_folder_filelist(src_path, file_type=ext)
#     print(abs_file_list)
    for src_file, base_file in zip(abs_file_list, base_file_list):
        dst_file = dst_path + prefix + base_file
        move(src_file, dst_file)
    return None



def empty_folder(path):
    if path[-1]!='*':
        path = path + '*'
    files = glob.glob(path)
    for f in files:
        os.remove(f)


def rescale(n, range1, range2):
    if n>range1[1]: #or n<range1[0]:
        n=range1[1]
    if n<range1[0]:
        n=range1[0]
    delta1 = range1[1] - range1[0]
    delta2 = range2[1] - range2[0]
    return (delta2 * (n - range1[0]) / delta1) + range2[0]



def rmse(y_true, y_pred):
    """
    RMSE (Root Mean Square Error) evaluation function
    :param y_true: label values
    :param y_pred: prediction values
    :return:  RMSE value of the input prediction values, evaluated against the input label values
    """
    return np.sqrt(mean_squared_error(y_true, y_pred))




def str2date(date_str, dateformat='%Y-%m-%d'):
    """
    convert an input string in specified format into datetime format
    :param date_str: the input string with certain specified format
    :param dateformat: the format of the string which is used by the strptime function to do the type converson
    :return dt_value: the datetime value that is corresponding to the input string and the specified format
    """
    dt_value = datetime.datetime.strptime(date_str, dateformat)
    return dt_value


def isnotebook():
    """
    Determine if the current python file is a jupyter notebook (.ipynb) or a python script (.py)
    :return: return True if the the current python file is a jupyter notebook, otherwise return False
    """
    try:
        shell = get_ipython().__class__.__name__
        if shell == 'ZMQInteractiveShell':
            return True   # Jupyter notebook
        elif shell == 'TerminalInteractiveShell':
            return False  # Terminal running IPython
        else:
            return False  # Other type (?)
    except NameError:
        return False



def list_intersection(left, right):
    """
    take two list as input, conver them into sets, calculate the intersection of the two sets, and return this as a list
    :param left: the first input list
    :param right: the second input list
    :return: the intersection set of elements for both input list, as a list
    """
    left_set = set(left)
    right_set = set(right)
    return list(left_set.intersection(right_set))


def list_union(left, right):
    """
    take two list as input, conver them into sets, calculate the union of the two sets, and return this as a list
    :param left: the first input list
    :param right: the second input list
    :return: the union set of elements for both input list, as a list
    """
    left_set = set(left)
    right_set = set(right)
    return list(left_set.union(right_set))


def list_difference(left, right):
    """
    take two list as input, conver them into sets, calculate the difference of the first set to the second set, and return this as a list
    :param left: the first input list
    :param right: the second input list
    :return: the result of difference set operation on elements for both input list, as a list
    """
    left_set = set(left)
    right_set = set(right)
    return list(left_set.difference(right_set))


def is_listelements_identical(left, right):
    equal_length = (len(left)==len(right))
    zero_diff = (len(list_difference(left,right))==0)
    return equal_length & zero_diff




def np_corr(a, b):
    """
    take two numpy arrays, and compute their correlation
    :param a: the first numpy array input
    :param b: the second numpy array input
    :return: the correlation between the two input arrays
    """
    return pd.Series(a).corr(pd.Series(b))



def list_sort_values(a, ascending=True):
    """
    sort the value of a list in specified order
    :param a: the input list
    :param ascending: specified if the sorting is to be done in ascending or descending order
    :return: the input list sorted in the specified order
    """
    return pd.Series(a).sort_values(ascending=ascending).tolist()


def get_rank(data):
    """
    convert the values of a list or array into ranked percentage values
    :param data: the input data in the form of a list or an array
    :return: the return ranked percentage values in numpy array
    """
    ranks = pd.Series(data).rank(pct=True).values
    return ranks



def plot_feature_corr(df, features, figsize=(10,10), vmin=-1.0):
    """
    plot the pair-wise correlation matrix for specified features in a dataframe
    :param df: the input dataframe
    :param features: the list of features for which correlation matrix will be plotted
    :param figsize: the size of the displayed figure
    :param vmin: the minimum value of the correlation to be included in the plotting
    :return: the pair-wise correlation values in the form of pandas dataframe, the figure will be plotted during the operation of this function.
    """
    val_corr = df[features].corr().fillna(0)
    f, ax = plt.subplots(figsize=figsize)
    sns.heatmap(val_corr, vmin=vmin, square=True)
    return val_corr


def decision_to_prob(data):
    """
    convert output value of a sklearn classifier (i.e. ridge classifier) decision function into probability
    :param data: output value of decision function in the form of a numpy array
    :return: value of probability in the form of a numpy array
    """
    prob = np.exp(data) / np.sum(np.exp(data))
    return prob


def np_describe(a):
    """
    provide overall statistic description of an input numpy value using the Describe method of Pandas Series
    :param a: the input numpy array
    :return: overall statistic description
    """
    return pd.Series(a.flatten()).describe()


def ks_2samp_selection(train_df, test_df, pval=0.1):
    """
    use scipy ks_2samp function to select features that are statistically similar between the input train and test dataframe.
    :param train_df: the input train dataframe
    :param test_df: the input test dataframe
    :param pval: the p value threshold use to decide which features to be selected. Only features with value higher than the specified p value will be selected
    :return train_df: the return train dataframe with selected features
    :return test_df: the return test dataframe with selected features
    """
    list_p_value = []
    for i in train_df.columns.tolist():
        list_p_value.append(ks_2samp(train_df[i], test_df[i])[1])
    Se = pd.Series(list_p_value, index=train_df.columns.tolist()).sort_values()
    list_discarded = list(Se[Se < pval].index)
    train_df = train_df.drop(columns=list_discarded)
    test_df = test_df.drop(columns=list_discarded)
    return train_df, test_df



def df_balance_sampling(df, class_feature, minor_class=1, sample_ratio=1):
    """
    :param df:
    :param class_feature:
    :param minor_class:
    :param sample_ratio:
    :return:
    """
    minor_df = df[df[class_feature] == minor_class]
    major_df = df[df[class_feature] == (1 - minor_class)].sample(sample_ratio * len(minor_df))

    res_df = minor_df.append(major_df)
    res_df = res_df.sample(len(res_df)).reset_index(drop=True)
    return res_df


def prob2acc(label, probs, p=0.5):
    """
    calculate accuracy score  for probability predictions  with given threshold, as part of the process, the input probability predictions will be converted into discrete binary predictions
    :param label: labels used to evaluate accuracy score
    :param probs: probability predictions for which accuracy score will be calculated
    :param p: the threshold to be used for convert probabilites into discrete binary values 0 and 1
    :return acc: the computed accuracy score
    :return preds: predictions in discrete binary value
    """

    preds = (probs >= p).astype(np.uint8)
    acc = accuracy_score(label, preds)
    return acc, preds



def np_pearson(t,p):
    vt = t - t.mean()
    vp = p - p.mean()
    top = np.sum(vt*vp)
    bottom = np.sqrt(np.sum(vt**2)) * np.sqrt(np.sum(vp**2))
    res = top/bottom
    return res


def df_get_features_with_str(df, ptrn):
    """
    extract list of feature names from a data frame that contain the specified regular expression pattern
    :param df: the input dataframe of which features name to be analysed
    :param ptrn: the specified regular expression pattern
    :return: list of feature names that contained the specified regular expression
    """
    return [col for col in df.columns.tolist() if len(re.findall(ptrn, col)) > 0]


def df_fillna_with_other(df, src_feature, dst_feature):
    """
    fill the NA values of a specified feature in a dataframe with values of another feature from the same row.
    :param df: the input dataframe
    :param src_feature: the specified feature of which NA value will be filled
    :param dst_feature: the feature of which values will be used
    :return: a dataframe with the specified feature's NA value being filled by values from the "dst_feature"
    """
    src_vals = df[src_feature].values
    dst_vals = df[dst_feature].values
    argwhere_nan = np.argwhere(np.isnan(dst_vals)).flatten()
    dst_vals[argwhere_nan] = src_vals[argwhere_nan]
    df[dst_feature] = dst_vals
    return df



def plot_prediction_prob(y_pred_prob):
    """
    plot probability prediction values using histrogram
    :param y_pred_prob: the probability prediction values to be plotted
    :return: None, the plot will be plotted during the operation of the function.
    """
    prob_series = pd.Series(data=y_pred_prob)
    prob_series.name = 'prediction probability'
    prob_series.plot(kind='hist', figsize=(15, 5), bins=50)
    plt.show()
    print(prob_series.describe())





def df_traintest_split(df, split_var, seed=None, train_ratio=0.75):
    """
    perform train test split on a specified feature on a given dataframe wwith specified train ratio. Unique value of the specified feature will only present on either the resulted train or the test dataframe
    :param df: the input dataframe to be split
    :param split_var: the feature to be used as unique value to perform the split
    :param seed: the random used to facilitate the train test split
    :param train_ratio: the ratio of data to be split into the resulted train dataframe.
    :return train_df: the resulted train dataframe after the split
    :return test_df: the resulted test dataframe after the split
    """
    sv_list = df[split_var].unique().tolist()
    train_length = int(len(sv_list) * train_ratio)
    train_siv_list = pd.Series(df[split_var].unique()).sample(train_length, random_state=seed)
    train_idx = df.loc[df[split_var].isin(train_siv_list)].index.values
    test_idx = df.iloc[df.index.difference(train_idx)].index.values
    train_df = df.loc[train_idx].copy().reset_index(drop=True)
    test_df = df.loc[test_idx].copy().reset_index(drop=True)
    return train_df, test_df



# https://www.kaggle.com/gemartin/load-data-reduce-memory-usage
def reduce_mem_usage(df, verbose=True, exceiptions=[]):
    """ iterate through all the columns of a dataframe and modify the data type
        to reduce memory usage.
    """
    np_input = False
    if isinstance(df, np.ndarray):
        np_input = True
        df = pd.DataFrame(data=df)

    start_mem = df.memory_usage().sum() / 1024 ** 2
    col_id = 0
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    for col in df.columns:
        if verbose: print('doing %d: %s' % (col_id, col))
        col_type = df[col].dtype
        try:
            if (col_type != object) & (col not in exceiptions):
                c_min = df[col].min()
                c_max = df[col].max()
                if str(col_type)[:3] == 'int':
                    if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                        df[col] = df[col].astype(np.int8)
                    elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                        df[col] = df[col].astype(np.int16)
                    elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                        df[col] = df[col].astype(np.int32)
                    elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                        df[col] = df[col].astype(np.int64)
                else:
                    if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                        #                         df[col] = df[col].astype(np.float16)
                        #                     elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                        df[col] = df[col].astype(np.float32)
                    else:
                        df[col] = df[col].astype(np.float64)
        #             else:
        #                 df[col] = df[col].astype('category')
        #                 pass
        except:
            pass
        col_id += 1
    end_mem = df.memory_usage().sum() / 1024 ** 2
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))

    if np_input:
        return df.values
    else:
        return df



def get_xgb_featimp(model):
    imp_type = ['weight', 'gain', 'cover', 'total_gain', 'total_cover']
    imp_dict = {}
    try:
        bst = model.get_booster()
    except:
        bst = model
    feature_names = bst.feature_names
    for impt in imp_type:
        imp_dict[impt] = []
        scores = bst.get_score(importance_type=impt)
        for feature in feature_names:
            if feature in scores.keys():
                imp_dict[impt].append(scores[feature])
            else:
                imp_dict[impt].append(np.nan)
    imp_df = pd.DataFrame(index=bst.feature_names, data=imp_dict)
    return imp_df


def get_df_rankavg(df):
    idx = df.index
    cols = df.columns.tolist()
    rankavg_dict = {}
    for col in cols:
        rankavg_dict[col]=df[col].rank(pct=True).tolist()
    rankavg_df = pd.DataFrame(index=idx, columns=cols, data=rankavg_dict)
    rankavg_df['rankavg'] = rankavg_df.mean(axis=1)
    return rankavg_df.sort_values(by='rankavg', ascending=False)


def get_list_gmean(lists):
    out = np.zeros((len(lists[0]), len(lists)))
    for i in range(0, len(lists)):
        out[:,i] = lists[i]
    gmean_out = gmean(out, axis=1)
    return gmean_out



def generate_nwise_combination(items, n=2):
    return list(itertools.combinations(items, n))


def pairwise_feature_generation(df, feature_list, operator='addition', verbose=True):
    feats_pair = generate_nwise_combination(feature_list, 2)
    result_df = pd.DataFrame()
    for pair in feats_pair:
        if verbose:
            print('generating %s of %s and %s' % (operator, pair[0], pair[1]))
        if operator == 'addition':
            feat_name = pair[0] + '_add_' + pair[1]
            result_df[feat_name] = df[pair[0]] + df[pair[1]]
        elif operator == 'multiplication':
            feat_name = pair[0] + '_mulp_' + pair[1]
            result_df[feat_name] = df[pair[0]] * df[pair[1]]
        elif operator == 'division':
            feat_name = pair[0] + '_div_' + pair[1]
            result_df[feat_name] = df[pair[0]] / df[pair[1]]
    return result_df


def try_divide(x, y, val=0.0):
    """
    try to perform division between two number, and return a default value if division by zero is detected
    :param x: the number to be used as dividend
    :param y: the number to be used as divisor
    :param val: the default output value
    :return: the output value, the default value of val will be returned if division by zero is detected
    """
    if y != 0.0:
        val = float(x) / y
    return val


def series_reverse_cumsum(a):
    return a.fillna(0).values[::-1].cumsum()[::-1]


def get_array_sharpe(values):
    return values.mean()/values.std()


#### NumerDash specific functions ###

def calculate_rounddailysharpe_dashboard(df, lastround, earliest_round, score='corr'):
    if score=='corr':
        target = 'corr_sharpe'
    elif score == 'corr_pct':
        target = 'corr_pct_sharpe'
    elif score=='mmc':
        target = 'mmc_sharpe'
    elif score=='mmc_pct':
        target = 'mmc_pct_sharpe'
    elif score=='corrmmc':
        target = 'corrmmc_sharpe'
    elif score=='corr2mmc':
        target = 'corr2mmc_sharpe'
    elif score=='cmavg_pct':
        target = 'cmavgpct_sharpe'
    elif score=='c2mavg_pct':
        target = 'c2mavcpct_sharpe'

    mean_feat = 'avg_sharpe'
    sos_feat = 'sos'
    df = df[(df['roundNumber'] >= earliest_round) & (df['roundNumber'] <= lastround)]
    res = df.groupby(['model', 'roundNumber', 'group'])[score].apply(
        lambda x: get_array_sharpe(x)).reset_index(drop=False)
    res = res.rename(columns={score: target}).sort_values('roundNumber', ascending=False)
    res = res.pivot(index=['model', 'group'], columns='roundNumber', values=target)
    res.columns.name = ''
    cols = [i for i in res.columns[::-1]]
    res = res[cols]
    res[mean_feat] = res[cols].mean(axis=1)
    res[sos_feat] = res[cols].apply(lambda x: get_array_sharpe(x), axis=1)
    res = res.drop_duplicates(keep='first').sort_values(by=sos_feat, ascending=False)
    res.reset_index(drop=False, inplace=True)
    return res[['model', 'group', sos_feat, mean_feat]+cols]



def groupby_agg_execution(agg_recipies, df, verbose=True):
    result_dfs = dict()
    for groupby_cols, features, aggs in agg_recipies:
        group_object = df.groupby(groupby_cols)
        groupby_key = '_'.join(groupby_cols)
        if groupby_key not in list(result_dfs.keys()):
            result_dfs[groupby_key] = pd.DataFrame()
        for feature in features:
            rename_col = feature
            for agg in aggs:
                if isinstance(agg, dict):
                    agg_name = list(agg.keys())[0]
                    agg_func = agg[agg_name]
                else:
                    agg_name = agg
                    agg_func = agg
                if agg_name=='count':
                    groupby_aggregate_name = '{}_{}'.format(groupby_key, agg_name)
                else:
                    groupby_aggregate_name = '{}_{}_{}'.format(groupby_key, feature, agg_name)
                verbose and print(f'generating statistic {groupby_aggregate_name}')
                groupby_res_df = group_object[feature].agg(agg_func).reset_index(drop=False)
                groupby_res_df = groupby_res_df.rename(columns={rename_col: groupby_aggregate_name})
                if len(result_dfs[groupby_key]) == 0:
                    result_dfs[groupby_key] = groupby_res_df
                else:
                    result_dfs[groupby_key][groupby_aggregate_name] = groupby_res_df[groupby_aggregate_name]
    return result_dfs


def get_latest_round_id():
    try:
        all_competitions = numerapi_utils.get_competitions()
        latest_comp_id = all_competitions[0]['number']
    except:
        print('calling numerai API unsuccessulf')
        # local_data = load_data(project_config.DASHBOARD_MODEL_RESULT_FILE)
        # latest_comp_id = local_data['roundNumber'].max()
        latest_comp_id = 0
    return int(latest_comp_id)

#     except:

latest_round = get_latest_round_id()




def update_numerati_data(url=project_config.NUMERATI_URL, save_path=project_config.FEATURE_PATH):
    content = requests.get(url).content
    data = pd.read_csv(io.StringIO(content.decode('utf-8')))
    save_file = os.path.join(save_path, 'numerati_data.pkl')
    pickle_data(save_file, data)
    return data




def get_model_group(model_name):
    cat_name = 'other'
    if model_name in project_config.MODEL_NAMES+project_config.NEW_MODEL_NAMES:
        cat_name = 'yx'
    elif model_name in project_config.TOP_LB:
        cat_name = 'top_corr'
    elif model_name in project_config.IAAI_MODELS:
        cat_name = 'iaai'
    elif model_name in project_config.ARBITRAGE_MODELS:
        cat_name = 'arbitrage'
    elif model_name in project_config.MCV_MODELS:
        cat_name = 'mcv'
    # elif model_name in project_config.MM_MODELS:
    #     cat_name = 'mm'
    elif model_name in project_config.BENCHMARK_MODELS:
        cat_name = 'benchmark'
    elif model_name in project_config.TP3M:
        cat_name = 'top_3m'
    elif model_name in project_config.TP1Y:
        cat_name = 'top_1y'
    return cat_name


def get_dashboard_data_status():
    dashboard_data_tstr = 'NA'
    nmtd_tstr = 'NA'
    try:
        dashboard_data_t = datetime.datetime.utcfromtimestamp(os.path.getctime(project_config.DASHBOARD_MODEL_RESULT_FILE))
        dashboard_data_tstr = dashboard_data_t.strftime(project_config.DATETIME_FORMAT2)
    except Exception as e:
        print(e)
        pass
    try:
        nmtd_t = datetime.datetime.utcfromtimestamp(os.path.getctime(project_config.NUMERATI_FILE))
        nmtd_tstr = nmtd_t.strftime(project_config.DATETIME_FORMAT2)
    except Exception as e:
        print(e)
        pass
    return dashboard_data_tstr, nmtd_tstr