Spaces:
Running
on
Zero
Running
on
Zero
| # coding: utf-8 | |
| """ | |
| The entrance of the gradio | |
| """ | |
| import tyro | |
| import gradio as gr | |
| import os.path as osp | |
| from src.utils.helper import load_description | |
| from src.gradio_pipeline_stf import GradioPipeline | |
| from src.config.crop_config import CropConfig | |
| from src.config.argument_config import ArgumentConfig | |
| from src.config.inference_config import InferenceConfig | |
| import spaces | |
| import cv2 | |
| # import gdown | |
| # folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib" | |
| # gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False) | |
| import os | |
| import sys | |
| from pathlib import Path | |
| from src.utils.video import extract_audio | |
| #from elevenlabs_utils import ElevenLabsPipeline | |
| from setup_environment import initialize_environment | |
| initialize_environment() | |
| sys.path.append('/home/user/.local/lib/python3.10/site-packages') | |
| sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_alternative/src/stf_alternative') | |
| sys.path.append('/home/user/.local/lib/python3.10/site-packages/stf_tools/src/stf_tools') | |
| sys.path.append('/home/user/app/') | |
| sys.path.append('/home/user/app/stf/') | |
| sys.path.append('/home/user/app/stf/stf_alternative/') | |
| sys.path.append('/home/user/app/stf/stf_alternative/src/stf_alternative') | |
| sys.path.append('/home/user/app/stf/stf_tools') | |
| sys.path.append('/home/user/app/stf/stf_tools/src/stf_tools') | |
| # CUDA 경로를 환경 변수로 설정 | |
| os.environ['PATH'] = '/usr/local/cuda/bin:' + os.environ.get('PATH', '') | |
| os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '') | |
| # 확인용 출력 | |
| print("PATH:", os.environ['PATH']) | |
| print("LD_LIBRARY_PATH:", os.environ['LD_LIBRARY_PATH']) | |
| from stf_utils import STFPipeline | |
| stf_pipeline_female = STFPipeline() | |
| stf_pipeline_male = STFPipeline( | |
| template_video_path="TEMP/Cam2_2309071202_0012_Natural_Looped.mp4", | |
| config_path="front_config_v3.json", | |
| checkpoint_path="TEMP/0157.pth", | |
| female_video=False | |
| ) | |
| def gpu_wrapped_stf_pipeline_execute(audio_path, video_type): | |
| if video_type == "Female video": | |
| stf_pipeline = stf_pipeline_female | |
| else: | |
| stf_pipeline = stf_pipeline_male | |
| return stf_pipeline.execute(audio_path) | |
| ###### 테스트중 ###### | |
| # set tyro theme | |
| tyro.extras.set_accent_color("bright_cyan") | |
| args = tyro.cli(ArgumentConfig) | |
| driving_video_path=gr.Video() | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| with gr.Row(): | |
| #audio_path_component = gr.Textbox(label="Input", value="assets/examples/driving/test_aud.mp3") | |
| input_audio = gr.Audio(label="Upload or Record an audio", type="filepath") | |
| stf_button = gr.Button("Audio to Video Generation", variant="primary") | |
| video_type = gr.Radio(choices=["Female video", "Male video"], label="Select video type", value="Female video") | |
| stf_button.click( | |
| fn=gpu_wrapped_stf_pipeline_execute, | |
| inputs=[ | |
| input_audio,video_type | |
| ], | |
| outputs=[driving_video_path] | |
| ) | |
| with gr.Row(): | |
| driving_video_path.render() | |
| ###### 테스트중 ###### | |
| # def partial_fields(target_class, kwargs): | |
| # return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) | |
| # # set tyro theme | |
| # tyro.extras.set_accent_color("bright_cyan") | |
| # args = tyro.cli(ArgumentConfig) | |
| # # specify configs for inference | |
| # inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig | |
| # crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig | |
| # # gradio_pipeline = GradioPipeline( | |
| # # inference_cfg=inference_cfg, | |
| # # crop_cfg=crop_cfg, | |
| # # args=args | |
| # # ) | |
| # @spaces.GPU(duration=120) | |
| # def gpu_wrapped_execute_video(*args, **kwargs): | |
| # return gradio_pipeline.execute_video(*args, **kwargs) | |
| # @spaces.GPU(duration=120) | |
| # def gpu_wrapped_execute_image(*args, **kwargs): | |
| # return gradio_pipeline.execute_image(*args, **kwargs) | |
| # @spaces.GPU(duration=120) | |
| # def gpu_wrapped_stf_pipeline_execute(audio_path): | |
| # return stf_pipeline.execute(audio_path) | |
| # @spaces.GPU(duration=120) | |
| # def gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice): | |
| # return elevenlabs_pipeline.generate_voice(text, voice) | |
| # def is_square_video(video_path): | |
| # video = cv2.VideoCapture(video_path) | |
| # width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| # height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| # video.release() | |
| # if width != height: | |
| # raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos") | |
| # return gr.update(visible=True) | |
| # # assets | |
| # title_md = "assets/gradio_title.md" | |
| # example_portrait_dir = "assets/examples/source" | |
| # example_video_dir = "assets/examples/driving" | |
| # data_examples = [ | |
| # [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
| # [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
| # [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
| # [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True], | |
| # [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True], | |
| # [osp.join(example_portrait_dir, "s22.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], | |
| # ] | |
| # #################### interface logic #################### | |
| # # Define components first | |
| # eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") | |
| # lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") | |
| # retargeting_input_image = gr.Image(type="filepath") | |
| # output_image = gr.Image(type="numpy") | |
| # output_image_paste_back = gr.Image(type="numpy") | |
| # output_video = gr.Video() | |
| # output_video_concat = gr.Video() | |
| # def run_end_to_end(image_path, text, voice, input_video, flag_relative, flag_do_crop, flag_remap, flag_crop_driving_video, male): #, animal): | |
| # # # animal 체크 여부에 따라 다른 pipeline 사용 | |
| # # if animal: | |
| # # gradio_pipeline = GradioPipelineAnimal( | |
| # # inference_cfg=inference_cfg, | |
| # # crop_cfg=crop_cfg, | |
| # # args=args | |
| # # ) | |
| # # else: | |
| # # gradio_pipeline = GradioPipeline( | |
| # # inference_cfg=inference_cfg, | |
| # # crop_cfg=crop_cfg, | |
| # # args=args | |
| # # ) | |
| # if input_video is None: | |
| # if not male: | |
| # stf_pipeline = STFPipeline() | |
| # else: | |
| # stf_pipeline = STFPipeline(template_video_path="/home/user/app/stf/TEMP/Cam2_2309071202_0012_Natural_Looped.mp4", | |
| # config_path="/home/user/app/stf/TEMP/front_config_v3.json", | |
| # checkpoint_path="/home/user/app/stf/TEMP/0157.pth", | |
| # ) | |
| # if input_video is None: | |
| # #audio_path = elevenlabs_pipeline.generate_voice(text, voice) | |
| # audio_path = gpu_wrapped_elevenlabs_pipeline_generate_voice(text, voice) | |
| # #driving_video_path = stf_pipeline.execute(audio_path) | |
| # driving_video_path = gpu_wrapped_stf_pipeline_execute(audio_path) | |
| # else: | |
| # driving_video_path = input_video | |
| # os.makedirs("animations",exist_ok=True) | |
| # audio_path = osp.join("animations", Path(input_video).stem+".wav") | |
| # extract_audio(driving_video_path, audio_path) | |
| # #output_path, crop_output_path = gradio_pipeline.execute_video( | |
| # output_path, crop_output_path = gpu_wrapped_execute_video( | |
| # input_image_path=image_path, | |
| # input_video_path=driving_video_path, | |
| # # input_driving_video_pickle_path=None, | |
| # flag_do_crop_input=flag_do_crop, | |
| # flag_remap_input=flag_remap, | |
| # flag_relative_input=flag_relative, | |
| # # driving_multiplier=1.0, | |
| # # flag_stitching=False, | |
| # # flag_crop_driving_video_input=flag_crop_driving_video, | |
| # # scale=2.3, | |
| # # vx_ratio=0.0, | |
| # # vy_ratio=-0.125, | |
| # # scale_crop_driving_video=2.2, | |
| # # vx_ratio_crop_driving_video=0.0, | |
| # # vy_ratio_crop_driving_video=-0.1, | |
| # # tab_selection=None, | |
| # audio_path=audio_path | |
| # ) | |
| # return output_path, crop_output_path | |
| # ###### 테스트중 ###### | |
| # stf_pipeline = STFPipeline() | |
| # with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # stf_button = gr.Button("stf test", variant="primary") | |
| # stf_button.click( | |
| # fn=gpu_wrapped_stf_pipeline_execute, | |
| # inputs=[ | |
| # audio_path | |
| # ], | |
| # outputs=[driving_video_path] | |
| # ) | |
| # ###### 테스트중 ###### | |
| # with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # with gr.Tabs(): | |
| # # 첫 번째 탭: Text to LipSync | |
| # with gr.Tab("Text to LipSync"): | |
| # gr.Markdown("# Text to LipSync") | |
| # with gr.Row(): | |
| # script_txt = gr.Text() | |
| # voice = gr.Audio(label="사용자 음성", type="filepath") | |
| # input_video = gr.Video() | |
| # with gr.Row(): | |
| # image_input = gr.Image(type="filepath") # 여기서 image_input을 정의합니다. | |
| # output_video.render() | |
| # #crop_output_video.render() | |
| # output_video_concat.render() | |
| # with gr.Row(): | |
| # flag_relative_input = gr.Checkbox(value=True, label="relative motion") | |
| # flag_do_crop_input = gr.Checkbox(value=True, label="do crop") | |
| # flag_remap_input = gr.Checkbox(value=True, label="paste-back") | |
| # flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving video)") | |
| # male = gr.Checkbox(value=False, label="male") | |
| # #animal = gr.Checkbox(value=False, label="animal") # animal 체크박스 추가 | |
| # with gr.Row(): | |
| # generate_speech = gr.Button("🚀 Generate Speech", variant="primary") | |
| # generate_speech.click( | |
| # fn=run_end_to_end, | |
| # inputs=[ | |
| # image_input, | |
| # script_txt, | |
| # voice, | |
| # input_video, | |
| # flag_relative_input, | |
| # flag_do_crop_input, | |
| # flag_remap_input, | |
| # flag_crop_driving_video_input, | |
| # male, | |
| # #animal # 추가된 animal 입력 | |
| # ], | |
| # outputs=[output_video, output_video_concat] | |
| # ) | |
| # # # 두 번째 탭: FLUX 이미지 생성 | |
| # # with gr.Tab("FLUX 이미지 생성"): | |
| # # flux_tab(image_input) # FLUX 이미지 생성을 위한 별도의 탭 | |
| # # # 세 번째 탭: Flux 개발용 탭 | |
| # # with gr.Tab("FLUX Dev"): | |
| # # flux_demo = create_flux_tab() # Flux 개발용 탭 생성 | |
| # # #flux_demo.render() # 해당 UI를 별도의 탭에만 렌더링 | |
| # with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # gr.HTML(load_description(title_md)) | |
| # gr.Markdown(load_description("assets/gradio_description_upload.md")) | |
| # with gr.Row(): | |
| # with gr.Accordion(open=True, label="Source Portrait"): | |
| # image_input = gr.Image(type="filepath") | |
| # gr.Examples( | |
| # examples=[ | |
| # [osp.join(example_portrait_dir, "s9.jpg")], | |
| # [osp.join(example_portrait_dir, "s6.jpg")], | |
| # [osp.join(example_portrait_dir, "s10.jpg")], | |
| # [osp.join(example_portrait_dir, "s5.jpg")], | |
| # [osp.join(example_portrait_dir, "s7.jpg")], | |
| # [osp.join(example_portrait_dir, "s12.jpg")], | |
| # [osp.join(example_portrait_dir, "s22.jpg")], | |
| # ], | |
| # inputs=[image_input], | |
| # cache_examples=False, | |
| # ) | |
| # with gr.Accordion(open=True, label="Driving Video"): | |
| # video_input = gr.Video() | |
| # gr.Examples( | |
| # examples=[ | |
| # [osp.join(example_video_dir, "d0.mp4")], | |
| # [osp.join(example_video_dir, "d18.mp4")], | |
| # [osp.join(example_video_dir, "d19.mp4")], | |
| # [osp.join(example_video_dir, "d14_trim.mp4")], | |
| # [osp.join(example_video_dir, "d6_trim.mp4")], | |
| # ], | |
| # inputs=[video_input], | |
| # cache_examples=False, | |
| # ) | |
| # with gr.Row(): | |
| # with gr.Accordion(open=False, label="Animation Instructions and Options"): | |
| # gr.Markdown(load_description("assets/gradio_description_animation.md")) | |
| # with gr.Row(): | |
| # flag_relative_input = gr.Checkbox(value=True, label="relative motion") | |
| # flag_do_crop_input = gr.Checkbox(value=True, label="do crop") | |
| # flag_remap_input = gr.Checkbox(value=True, label="paste-back") | |
| # gr.Markdown(load_description("assets/gradio_description_animate_clear.md")) | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # process_button_animation = gr.Button("🚀 Animate", variant="primary") | |
| # with gr.Column(): | |
| # process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear") | |
| # with gr.Row(): | |
| # with gr.Column(): | |
| # with gr.Accordion(open=True, label="The animated video in the original image space"): | |
| # output_video.render() | |
| # with gr.Column(): | |
| # with gr.Accordion(open=True, label="The animated video"): | |
| # output_video_concat.render() | |
| # with gr.Row(): | |
| # # Examples | |
| # gr.Markdown("## You could also choose the examples below by one click ⬇️") | |
| # with gr.Row(): | |
| # gr.Examples( | |
| # examples=data_examples, | |
| # fn=gpu_wrapped_execute_video, | |
| # inputs=[ | |
| # image_input, | |
| # video_input, | |
| # flag_relative_input, | |
| # flag_do_crop_input, | |
| # flag_remap_input | |
| # ], | |
| # outputs=[output_image, output_image_paste_back], | |
| # examples_per_page=6, | |
| # cache_examples=False, | |
| # ) | |
| # gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True) | |
| # with gr.Row(visible=True): | |
| # eye_retargeting_slider.render() | |
| # lip_retargeting_slider.render() | |
| # with gr.Row(visible=True): | |
| # process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary") | |
| # process_button_reset_retargeting = gr.ClearButton( | |
| # [ | |
| # eye_retargeting_slider, | |
| # lip_retargeting_slider, | |
| # retargeting_input_image, | |
| # output_image, | |
| # output_image_paste_back | |
| # ], | |
| # value="🧹 Clear" | |
| # ) | |
| # with gr.Row(visible=True): | |
| # with gr.Column(): | |
| # with gr.Accordion(open=True, label="Retargeting Input"): | |
| # retargeting_input_image.render() | |
| # gr.Examples( | |
| # examples=[ | |
| # [osp.join(example_portrait_dir, "s9.jpg")], | |
| # [osp.join(example_portrait_dir, "s6.jpg")], | |
| # [osp.join(example_portrait_dir, "s10.jpg")], | |
| # [osp.join(example_portrait_dir, "s5.jpg")], | |
| # [osp.join(example_portrait_dir, "s7.jpg")], | |
| # [osp.join(example_portrait_dir, "s12.jpg")], | |
| # [osp.join(example_portrait_dir, "s22.jpg")], | |
| # ], | |
| # inputs=[retargeting_input_image], | |
| # cache_examples=False, | |
| # ) | |
| # with gr.Column(): | |
| # with gr.Accordion(open=True, label="Retargeting Result"): | |
| # output_image.render() | |
| # with gr.Column(): | |
| # with gr.Accordion(open=True, label="Paste-back Result"): | |
| # output_image_paste_back.render() | |
| # # binding functions for buttons | |
| # process_button_retargeting.click( | |
| # # fn=gradio_pipeline.execute_image, | |
| # fn=gpu_wrapped_execute_image, | |
| # inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input], | |
| # outputs=[output_image, output_image_paste_back], | |
| # show_progress=True | |
| # ) | |
| # process_button_animation.click( | |
| # fn=gpu_wrapped_execute_video, | |
| # inputs=[ | |
| # image_input, | |
| # video_input, | |
| # flag_relative_input, | |
| # flag_do_crop_input, | |
| # flag_remap_input | |
| # ], | |
| # outputs=[output_video, output_video_concat], | |
| # show_progress=True | |
| # ) | |
| # # image_input.change( | |
| # # fn=gradio_pipeline.prepare_retargeting, | |
| # # inputs=image_input, | |
| # # outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image] | |
| # # ) | |
| # video_input.upload( | |
| # fn=is_square_video, | |
| # inputs=video_input, | |
| # outputs=video_input | |
| # ) | |
| demo.launch( | |
| server_port=args.server_port, | |
| share=args.share, | |
| server_name=args.server_name | |
| ) |