Spaces:
Sleeping
Sleeping
File size: 17,672 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import argparse
import itertools
import json
import os
import re
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library import sai_model_spec, train_util
import library.model_util as model_util
import lora
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
CLAMP_QUANTILE = 0.99
ACCEPTABLE = [12, 17, 20, 26]
SDXL_LAYER_NUM = [12, 20]
LAYER12 = {
"BASE": True,
"IN00": False,
"IN01": False,
"IN02": False,
"IN03": False,
"IN04": True,
"IN05": True,
"IN06": False,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": False,
"OUT07": False,
"OUT08": False,
"OUT09": False,
"OUT10": False,
"OUT11": False,
}
LAYER17 = {
"BASE": True,
"IN00": False,
"IN01": True,
"IN02": True,
"IN03": False,
"IN04": True,
"IN05": True,
"IN06": False,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": False,
"OUT01": False,
"OUT02": False,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": True,
"OUT10": True,
"OUT11": True,
}
LAYER20 = {
"BASE": True,
"IN00": True,
"IN01": True,
"IN02": True,
"IN03": True,
"IN04": True,
"IN05": True,
"IN06": True,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": False,
"OUT10": False,
"OUT11": False,
}
LAYER26 = {
"BASE": True,
"IN00": True,
"IN01": True,
"IN02": True,
"IN03": True,
"IN04": True,
"IN05": True,
"IN06": True,
"IN07": True,
"IN08": True,
"IN09": True,
"IN10": True,
"IN11": True,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": True,
"OUT10": True,
"OUT11": True,
}
assert len([v for v in LAYER12.values() if v]) == 12
assert len([v for v in LAYER17.values() if v]) == 17
assert len([v for v in LAYER20.values() if v]) == 20
assert len([v for v in LAYER26.values() if v]) == 26
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
def get_lbw_block_index(lora_name: str, is_sdxl: bool = False) -> int:
# lbw block index is 0-based, but 0 for text encoder, so we return 0 for text encoder
if "text_model_encoder_" in lora_name: # LoRA for text encoder
return 0
# lbw block index is 1-based for U-Net, and no "input_blocks.0" in CompVis SD, so "input_blocks.1" have index 2
block_idx = -1 # invalid lora name
if not is_sdxl:
NUM_OF_BLOCKS = 12 # up/down blocks
m = RE_UPDOWN.search(lora_name)
if m:
g = m.groups()
up_down = g[0]
i = int(g[1])
j = int(g[3])
if up_down == "down":
if g[2] == "resnets" or g[2] == "attentions":
idx = 3 * i + j + 1
elif g[2] == "downsamplers":
idx = 3 * (i + 1)
else:
return block_idx # invalid lora name
elif up_down == "up":
if g[2] == "resnets" or g[2] == "attentions":
idx = 3 * i + j
elif g[2] == "upsamplers":
idx = 3 * i + 2
else:
return block_idx # invalid lora name
if g[0] == "down":
block_idx = 1 + idx # 1-based index, down block index
elif g[0] == "up":
block_idx = 1 + NUM_OF_BLOCKS + 1 + idx # 1-based index, num blocks, mid block, up block index
elif "mid_block_" in lora_name:
block_idx = 1 + NUM_OF_BLOCKS # 1-based index, num blocks, mid block
else:
# SDXL: some numbers are skipped
if lora_name.startswith("lora_unet_"):
name = lora_name[len("lora_unet_") :]
if name.startswith("time_embed_") or name.startswith("label_emb_"): # 1, No LoRA in sd-scripts
block_idx = 1
elif name.startswith("input_blocks_"): # 1-8 to 2-9
block_idx = 1 + int(name.split("_")[2])
elif name.startswith("middle_block_"): # 13
block_idx = 13
elif name.startswith("output_blocks_"): # 0-8 to 14-22
block_idx = 14 + int(name.split("_")[2])
elif name.startswith("out_"): # 23, No LoRA in sd-scripts
block_idx = 23
return block_idx
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, state_dict, metadata):
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(state_dict, file_name, metadata=metadata)
else:
torch.save(state_dict, file_name)
def format_lbws(lbws):
try:
# lbwは"[1,1,1,1,1,1,1,1,1,1,1,1]"のような文字列で与えられることを期待している
lbws = [json.loads(lbw) for lbw in lbws]
except Exception:
raise ValueError(f"format of lbws are must be json / 層別適用率はJSON形式で書いてください")
assert all(isinstance(lbw, list) for lbw in lbws), f"lbws are must be list / 層別適用率はリストにしてください"
assert len(set(len(lbw) for lbw in lbws)) == 1, "all lbws should have the same length / 層別適用率は同じ長さにしてください"
assert all(
len(lbw) in ACCEPTABLE for lbw in lbws
), f"length of lbw are must be in {ACCEPTABLE} / 層別適用率の長さは{ACCEPTABLE}のいずれかにしてください"
assert all(
all(isinstance(weight, (int, float)) for weight in lbw) for lbw in lbws
), f"values of lbs are must be numbers / 層別適用率の値はすべて数値にしてください"
layer_num = len(lbws[0])
is_sdxl = True if layer_num in SDXL_LAYER_NUM else False
FLAGS = {
"12": LAYER12.values(),
"17": LAYER17.values(),
"20": LAYER20.values(),
"26": LAYER26.values(),
}[str(layer_num)]
LBW_TARGET_IDX = [i for i, flag in enumerate(FLAGS) if flag]
return lbws, is_sdxl, LBW_TARGET_IDX
def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, merge_dtype):
logger.info(f"new rank: {new_rank}, new conv rank: {new_conv_rank}")
merged_sd = {}
v2 = None # This is meaning LoRA Metadata v2, Not meaning SD2
base_model = None
if lbws:
lbws, is_sdxl, LBW_TARGET_IDX = format_lbws(lbws)
else:
is_sdxl = False
LBW_TARGET_IDX = []
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws):
logger.info(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lora_metadata is not None:
if v2 is None:
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
if lbw:
lbw_weights = [1] * 26
for index, value in zip(LBW_TARGET_IDX, lbw):
lbw_weights[index] = value
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}")
# merge
logger.info(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if "lora_down" not in key:
continue
lora_module_name = key[: key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + ".lora_up.weight"]
alpha = lora_sd.get(lora_module_name + ".alpha", network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
kernel_size = None if not conv2d else down_weight.size()[2:4]
# logger.info(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size)
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
else:
weight = merged_sd[lora_module_name]
if device:
weight = weight.to(device)
# merge to weight
if device:
up_weight = up_weight.to(device)
down_weight = down_weight.to(device)
# W <- W + U * D
scale = alpha / network_dim
if lbw:
index = get_lbw_block_index(key, is_sdxl)
is_lbw_target = index in LBW_TARGET_IDX
if is_lbw_target:
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける
if device: # and isinstance(scale, torch.Tensor):
scale = scale.to(device)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif kernel_size == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
merged_sd[lora_module_name] = weight.to("cpu")
# extract from merged weights
logger.info("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
if device:
mat = mat.to(device)
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = mat.size()[0:2]
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank
module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :module_new_rank]
S = S[:module_new_rank]
U = U @ torch.diag(S)
Vh = Vh[:module_new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, module_new_rank, 1, 1)
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1])
up_weight = U
down_weight = Vh
merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu")
# build minimum metadata
dims = f"{new_rank}"
alphas = f"{new_rank}"
if new_conv_rank is not None:
network_args = {"conv_dim": new_conv_rank, "conv_alpha": new_conv_rank}
else:
network_args = None
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, network_args)
return merged_lora_sd, metadata, v2 == "True", base_model
def merge(args):
assert len(args.models) == len(
args.ratios
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
if args.lbws:
assert len(args.models) == len(
args.lbws
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください"
else:
args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
state_dict, metadata, v2, base_model = merge_lora_models(
args.models, args.ratios, args.lbws, args.new_rank, new_conv_rank, args.device, merge_dtype
)
# cast to save_dtype before calculating hashes
for key in list(state_dict.keys()):
value = state_dict[key]
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype:
state_dict[key] = value.to(save_dtype)
logger.info(f"calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
is_sdxl = base_model is not None and base_model.lower().startswith("sdxl")
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
state_dict, v2, v2, is_sdxl, True, False, time.time(), title=title, merged_from=merged_from
)
if v2:
# TODO read sai modelspec
logger.warning(
"Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
)
metadata.update(sai_metadata)
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
choices=["float", "fp16", "bf16"],
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument(
"--models",
type=str,
nargs="*",
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors",
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率")
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument(
"--new_conv_rank",
type=int,
default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
)
parser.add_argument(
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
)
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)
|