Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,538 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo
import os
import argparse
import torch
from safetensors.torch import load_file, save_file, safe_open
from tqdm import tqdm
import numpy as np
from library import train_util
from library import model_util
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
MIN_SV = 1e-6
# Model save and load functions
def load_state_dict(file_name, dtype):
if model_util.is_safetensors(file_name):
sd = load_file(file_name)
with safe_open(file_name, framework="pt") as f:
metadata = f.metadata()
else:
sd = torch.load(file_name, map_location="cpu")
metadata = None
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, state_dict, metadata):
if model_util.is_safetensors(file_name):
save_file(state_dict, file_name, metadata)
else:
torch.save(state_dict, file_name)
# Indexing functions
def index_sv_cumulative(S, target):
original_sum = float(torch.sum(S))
cumulative_sums = torch.cumsum(S, dim=0) / original_sum
index = int(torch.searchsorted(cumulative_sums, target)) + 1
index = max(1, min(index, len(S) - 1))
return index
def index_sv_fro(S, target):
S_squared = S.pow(2)
S_fro_sq = float(torch.sum(S_squared))
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
index = max(1, min(index, len(S) - 1))
return index
def index_sv_ratio(S, target):
max_sv = S[0]
min_sv = max_sv / target
index = int(torch.sum(S > min_sv).item())
index = max(1, min(index, len(S) - 1))
return index
# Modified from Kohaku-blueleaf's extract/merge functions
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
out_size, in_size, kernel_size, _ = weight.size()
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device))
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
lora_rank = param_dict["new_rank"]
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu()
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu()
del U, S, Vh, weight
return param_dict
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
out_size, in_size = weight.size()
U, S, Vh = torch.linalg.svd(weight.to(device))
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
lora_rank = param_dict["new_rank"]
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu()
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu()
del U, S, Vh, weight
return param_dict
def merge_conv(lora_down, lora_up, device):
in_rank, in_size, kernel_size, k_ = lora_down.shape
out_size, out_rank, _, _ = lora_up.shape
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch"
lora_down = lora_down.to(device)
lora_up = lora_up.to(device)
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1)
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size)
del lora_up, lora_down
return weight
def merge_linear(lora_down, lora_up, device):
in_rank, in_size = lora_down.shape
out_size, out_rank = lora_up.shape
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch"
lora_down = lora_down.to(device)
lora_up = lora_up.to(device)
weight = lora_up @ lora_down
del lora_up, lora_down
return weight
# Calculate new rank
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
param_dict = {}
if dynamic_method == "sv_ratio":
# Calculate new dim and alpha based off ratio
new_rank = index_sv_ratio(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
elif dynamic_method == "sv_cumulative":
# Calculate new dim and alpha based off cumulative sum
new_rank = index_sv_cumulative(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
elif dynamic_method == "sv_fro":
# Calculate new dim and alpha based off sqrt sum of squares
new_rank = index_sv_fro(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
else:
new_rank = rank
new_alpha = float(scale * new_rank)
if S[0] <= MIN_SV: # Zero matrix, set dim to 1
new_rank = 1
new_alpha = float(scale * new_rank)
elif new_rank > rank: # cap max rank at rank
new_rank = rank
new_alpha = float(scale * new_rank)
# Calculate resize info
s_sum = torch.sum(torch.abs(S))
s_rank = torch.sum(torch.abs(S[:new_rank]))
S_squared = S.pow(2)
s_fro = torch.sqrt(torch.sum(S_squared))
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
fro_percent = float(s_red_fro / s_fro)
param_dict["new_rank"] = new_rank
param_dict["new_alpha"] = new_alpha
param_dict["sum_retained"] = (s_rank) / s_sum
param_dict["fro_retained"] = fro_percent
param_dict["max_ratio"] = S[0] / S[new_rank - 1]
return param_dict
def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
network_alpha = None
network_dim = None
verbose_str = "\n"
fro_list = []
# Extract loaded lora dim and alpha
for key, value in lora_sd.items():
if network_alpha is None and "alpha" in key:
network_alpha = value
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
network_dim = value.size()[0]
if network_alpha is not None and network_dim is not None:
break
if network_alpha is None:
network_alpha = network_dim
scale = network_alpha / network_dim
if dynamic_method:
logger.info(
f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}"
)
lora_down_weight = None
lora_up_weight = None
o_lora_sd = lora_sd.copy()
block_down_name = None
block_up_name = None
with torch.no_grad():
for key, value in tqdm(lora_sd.items()):
weight_name = None
if "lora_down" in key:
block_down_name = key.rsplit(".lora_down", 1)[0]
weight_name = key.rsplit(".", 1)[-1]
lora_down_weight = value
else:
continue
# find corresponding lora_up and alpha
block_up_name = block_down_name
lora_up_weight = lora_sd.get(block_up_name + ".lora_up." + weight_name, None)
lora_alpha = lora_sd.get(block_down_name + ".alpha", None)
weights_loaded = lora_down_weight is not None and lora_up_weight is not None
if weights_loaded:
conv2d = len(lora_down_weight.size()) == 4
if lora_alpha is None:
scale = 1.0
else:
scale = lora_alpha / lora_down_weight.size()[0]
if conv2d:
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
param_dict = extract_conv(full_weight_matrix, new_conv_rank, dynamic_method, dynamic_param, device, scale)
else:
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device)
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
if verbose:
max_ratio = param_dict["max_ratio"]
sum_retained = param_dict["sum_retained"]
fro_retained = param_dict["fro_retained"]
if not np.isnan(fro_retained):
fro_list.append(float(fro_retained))
verbose_str += f"{block_down_name:75} | "
verbose_str += (
f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
)
if verbose and dynamic_method:
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
else:
verbose_str += "\n"
new_alpha = param_dict["new_alpha"]
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype)
block_down_name = None
block_up_name = None
lora_down_weight = None
lora_up_weight = None
weights_loaded = False
del param_dict
if verbose:
print(verbose_str)
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
logger.info("resizing complete")
return o_lora_sd, network_dim, new_alpha
def resize(args):
if args.save_to is None or not (
args.save_to.endswith(".ckpt")
or args.save_to.endswith(".pt")
or args.save_to.endswith(".pth")
or args.save_to.endswith(".safetensors")
):
raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.")
args.new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
if args.dynamic_method and not args.dynamic_param:
raise Exception("If using dynamic_method, then dynamic_param is required")
merge_dtype = str_to_dtype("float") # matmul method above only seems to work in float32
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
logger.info("loading Model...")
lora_sd, metadata = load_state_dict(args.model, merge_dtype)
logger.info("Resizing Lora...")
state_dict, old_dim, new_alpha = resize_lora_model(
lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose
)
# update metadata
if metadata is None:
metadata = {}
comment = metadata.get("ss_training_comment", "")
if not args.dynamic_method:
conv_desc = "" if args.new_rank == args.new_conv_rank else f" (conv: {args.new_conv_rank})"
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}{conv_desc}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
else:
metadata["ss_training_comment"] = (
f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
)
metadata["ss_network_dim"] = "Dynamic"
metadata["ss_network_alpha"] = "Dynamic"
# cast to save_dtype before calculating hashes
for key in list(state_dict.keys()):
value = state_dict[key]
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype:
state_dict[key] = value.to(save_dtype)
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat",
)
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument(
"--new_conv_rank",
type=int,
default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument(
"--model",
type=str,
default=None,
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors",
)
parser.add_argument(
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
)
parser.add_argument(
"--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する"
)
parser.add_argument(
"--dynamic_method",
type=str,
default=None,
choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank",
)
parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
resize(args)
|