Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,740 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
# temporary minimum implementation of LoRA
# SD3 doesn't have Conv2d, so we ignore it
# TODO commonize with the original/SD3/FLUX implementation
# LoRA network module
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from transformers import CLIPTextModelWithProjection, T5EncoderModel
import numpy as np
import torch
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from networks.lora_flux import LoRAModule, LoRAInfModule
from library import sd3_models
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: sd3_models.SDVAE,
text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]],
mmdit,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
# attn dim, mlp dim: only for DoubleStreamBlock. SingleStreamBlock is not supported because of combined qkv
context_attn_dim = kwargs.get("context_attn_dim", None)
context_mlp_dim = kwargs.get("context_mlp_dim", None)
context_mod_dim = kwargs.get("context_mod_dim", None)
x_attn_dim = kwargs.get("x_attn_dim", None)
x_mlp_dim = kwargs.get("x_mlp_dim", None)
x_mod_dim = kwargs.get("x_mod_dim", None)
if context_attn_dim is not None:
context_attn_dim = int(context_attn_dim)
if context_mlp_dim is not None:
context_mlp_dim = int(context_mlp_dim)
if context_mod_dim is not None:
context_mod_dim = int(context_mod_dim)
if x_attn_dim is not None:
x_attn_dim = int(x_attn_dim)
if x_mlp_dim is not None:
x_mlp_dim = int(x_mlp_dim)
if x_mod_dim is not None:
x_mod_dim = int(x_mod_dim)
type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim]
if all([d is None for d in type_dims]):
type_dims = None
# emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear]
emb_dims = kwargs.get("emb_dims", None)
if emb_dims is not None:
emb_dims = emb_dims.strip()
if emb_dims.startswith("[") and emb_dims.endswith("]"):
emb_dims = emb_dims[1:-1]
emb_dims = [int(d) for d in emb_dims.split(",")] # is it better to use ast.literal_eval?
assert len(emb_dims) == 6, f"invalid emb_dims: {emb_dims}, must be 6 dimensions (context, t, x, y, final_mod, final_linear)"
# double/single train blocks
def parse_block_selection(selection: str, total_blocks: int) -> List[bool]:
"""
Parse a block selection string and return a list of booleans.
Args:
selection (str): A string specifying which blocks to select.
total_blocks (int): The total number of blocks available.
Returns:
List[bool]: A list of booleans indicating which blocks are selected.
"""
if selection == "all":
return [True] * total_blocks
if selection == "none" or selection == "":
return [False] * total_blocks
selected = [False] * total_blocks
ranges = selection.split(",")
for r in ranges:
if "-" in r:
start, end = map(str.strip, r.split("-"))
start = int(start)
end = int(end)
assert 0 <= start < total_blocks, f"invalid start index: {start}"
assert 0 <= end < total_blocks, f"invalid end index: {end}"
assert start <= end, f"invalid range: {start}-{end}"
for i in range(start, end + 1):
selected[i] = True
else:
index = int(r)
assert 0 <= index < total_blocks, f"invalid index: {index}"
selected[index] = True
return selected
train_block_indices = kwargs.get("train_block_indices", None)
if train_block_indices is not None:
train_block_indices = parse_block_selection(train_block_indices, 999) # 999 is a dummy number
# rank/module dropout
rank_dropout = kwargs.get("rank_dropout", None)
if rank_dropout is not None:
rank_dropout = float(rank_dropout)
module_dropout = kwargs.get("module_dropout", None)
if module_dropout is not None:
module_dropout = float(module_dropout)
# split qkv
split_qkv = kwargs.get("split_qkv", False)
if split_qkv is not None:
split_qkv = True if split_qkv == "True" else False
# train T5XXL
train_t5xxl = kwargs.get("train_t5xxl", False)
if train_t5xxl is not None:
train_t5xxl = True if train_t5xxl == "True" else False
# verbose
verbose = kwargs.get("verbose", False)
if verbose is not None:
verbose = True if verbose == "True" else False
# すごく引数が多いな ( ^ω^)・・・
network = LoRANetwork(
text_encoders,
mmdit,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
dropout=neuron_dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
conv_lora_dim=conv_dim,
conv_alpha=conv_alpha,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
type_dims=type_dims,
emb_dims=emb_dims,
train_block_indices=train_block_indices,
verbose=verbose,
)
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None)
loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None)
loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None)
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None
loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None
loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None
if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None:
network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, ae, text_encoders, mmdit, weights_sd=None, for_inference=False, **kwargs):
# if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping, and train t5xxl
modules_dim = {}
modules_alpha = {}
train_t5xxl = None
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# logger.info(lora_name, value.size(), dim)
if train_t5xxl is None or train_t5xxl is False:
train_t5xxl = "lora_te3" in lora_name
if train_t5xxl is None:
train_t5xxl = False
split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined
module_class = LoRAInfModule if for_inference else LoRAModule
network = LoRANetwork(
text_encoders,
mmdit,
multiplier=multiplier,
modules_dim=modules_dim,
modules_alpha=modules_alpha,
module_class=module_class,
split_qkv=split_qkv,
train_t5xxl=train_t5xxl,
)
return network, weights_sd
class LoRANetwork(torch.nn.Module):
SD3_TARGET_REPLACE_MODULE = ["SingleDiTBlock"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"]
LORA_PREFIX_SD3 = "lora_unet" # make ComfyUI compatible
LORA_PREFIX_TEXT_ENCODER_CLIP_L = "lora_te1"
LORA_PREFIX_TEXT_ENCODER_CLIP_G = "lora_te2"
LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible
def __init__(
self,
text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]],
unet: sd3_models.MMDiT,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
module_class: Type[object] = LoRAModule,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
split_qkv: bool = False,
train_t5xxl: bool = False,
type_dims: Optional[List[int]] = None,
emb_dims: Optional[List[int]] = None,
train_block_indices: Optional[List[bool]] = None,
verbose: Optional[bool] = False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.split_qkv = split_qkv
self.train_t5xxl = train_t5xxl
self.type_dims = type_dims
self.emb_dims = emb_dims
self.train_block_indices = train_block_indices
self.loraplus_lr_ratio = None
self.loraplus_unet_lr_ratio = None
self.loraplus_text_encoder_lr_ratio = None
if modules_dim is not None:
logger.info(f"create LoRA network from weights")
self.emb_dims = [0] * 6 # create emb_dims
# verbose = True
else:
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
logger.info(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}"
)
# if self.conv_lora_dim is not None:
# logger.info(
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}"
# )
qkv_dim = 0
if self.split_qkv:
logger.info(f"split qkv for LoRA")
qkv_dim = unet.joint_blocks[0].context_block.attn.qkv.weight.size(0)
if train_t5xxl:
logger.info(f"train T5XXL as well")
# create module instances
def create_modules(
is_mmdit: bool,
text_encoder_idx: Optional[int],
root_module: torch.nn.Module,
target_replace_modules: List[str],
filter: Optional[str] = None,
default_dim: Optional[int] = None,
include_conv2d_if_filter: bool = False,
) -> List[LoRAModule]:
prefix = (
self.LORA_PREFIX_SD3
if is_mmdit
else [self.LORA_PREFIX_TEXT_ENCODER_CLIP_L, self.LORA_PREFIX_TEXT_ENCODER_CLIP_G, self.LORA_PREFIX_TEXT_ENCODER_T5][
text_encoder_idx
]
)
loras = []
skipped = []
for name, module in root_module.named_modules():
if target_replace_modules is None or module.__class__.__name__ in target_replace_modules:
if target_replace_modules is None: # dirty hack for all modules
module = root_module # search all modules
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + (name + "." if name else "") + child_name
lora_name = lora_name.replace(".", "_")
force_incl_conv2d = False
if filter is not None:
if not filter in lora_name:
continue
force_incl_conv2d = include_conv2d_if_filter
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if is_mmdit and type_dims is not None:
# type_dims = [context_attn_dim, context_mlp_dim, context_mod_dim, x_attn_dim, x_mlp_dim, x_mod_dim]
identifier = [
("context_block", "attn"),
("context_block", "mlp"),
("context_block", "adaLN_modulation"),
("x_block", "attn"),
("x_block", "mlp"),
("x_block", "adaLN_modulation"),
]
for i, d in enumerate(type_dims):
if d is not None and all([id in lora_name for id in identifier[i]]):
dim = d # may be 0 for skip
break
if is_mmdit and dim and self.train_block_indices is not None and "joint_blocks" in lora_name:
# "lora_unet_joint_blocks_0_x_block_attn_proj..."
block_index = int(lora_name.split("_")[4]) # bit dirty
if self.train_block_indices is not None and not self.train_block_indices[block_index]:
dim = 0
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
elif force_incl_conv2d:
# x_embedder
dim = default_dim if default_dim is not None else self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None):
skipped.append(lora_name)
continue
# qkv split
split_dims = None
if is_mmdit and split_qkv:
if "joint_blocks" in lora_name and "qkv" in lora_name:
split_dims = [qkv_dim // 3] * 3
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
split_dims=split_dims,
)
loras.append(lora)
if target_replace_modules is None:
break # all modules are searched
return loras, skipped
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = []
skipped_te = []
for i, text_encoder in enumerate(text_encoders):
index = i
if not train_t5xxl and index >= 2: # 0: CLIP-L, 1: CLIP-G, 2: T5XXL, so we skip T5XXL if train_t5xxl is False
break
logger.info(f"create LoRA for Text Encoder {index+1}:")
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.")
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
# create LoRA for U-Net
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]]
self.unet_loras, skipped_un = create_modules(True, None, unet, LoRANetwork.SD3_TARGET_REPLACE_MODULE)
# emb_dims [context_embedder, t_embedder, x_embedder, y_embedder, final_mod, final_linear]
if self.emb_dims:
for filter, in_dim in zip(
[
"context_embedder",
"_t_embedder", # don't use "t_embedder" because it's used in "context_embedder"
"x_embedder",
"y_embedder",
"final_layer_adaLN_modulation",
"final_layer_linear",
],
self.emb_dims,
):
# x_embedder is conv2d, so we need to include it
loras, _ = create_modules(
True, None, unet, None, filter=filter, default_dim=in_dim, include_conv2d_if_filter=filter == "x_embedder"
)
# if len(loras) > 0:
# logger.info(f"create LoRA for {filter}: {len(loras)} modules.")
self.unet_loras.extend(loras)
logger.info(f"create LoRA for SD3 MMDiT: {len(self.unet_loras)} modules.")
if verbose:
for lora in self.unet_loras:
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}")
skipped = skipped_te + skipped_un
if verbose and len(skipped) > 0:
logger.warning(
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
logger.info(f"\t{name}")
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def set_enabled(self, is_enabled):
for lora in self.text_encoder_loras + self.unet_loras:
lora.enabled = is_enabled
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def load_state_dict(self, state_dict, strict=True):
# override to convert original weight to split qkv
if not self.split_qkv:
return super().load_state_dict(state_dict, strict)
# split qkv
for key in list(state_dict.keys()):
if not ("joint_blocks" in key and "qkv" in key):
continue
weight = state_dict[key]
lora_name = key.split(".")[0]
if "lora_down" in key and "weight" in key:
# dense weight (rank*3, in_dim)
split_weight = torch.chunk(weight, 3, dim=0)
for i, split_w in enumerate(split_weight):
state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w
del state_dict[key]
# print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}")
elif "lora_up" in key and "weight" in key:
# sparse weight (out_dim=sum(split_dims), rank*3)
rank = weight.size(1) // 3
i = 0
split_dim = weight.shape[0] // 3
for j in range(3):
state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dim, j * rank : (j + 1) * rank]
i += split_dim
del state_dict[key]
# alpha is unchanged
return super().load_state_dict(state_dict, strict)
def state_dict(self, destination=None, prefix="", keep_vars=False):
if not self.split_qkv:
return super().state_dict(destination, prefix, keep_vars)
# merge qkv
state_dict = super().state_dict(destination, prefix, keep_vars)
new_state_dict = {}
for key in list(state_dict.keys()):
if not ("joint_blocks" in key and "qkv" in key):
new_state_dict[key] = state_dict[key]
continue
if key not in state_dict:
continue # already merged
lora_name = key.split(".")[0]
# (rank, in_dim) * 3
down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(3)]
# (split dim, rank) * 3
up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(3)]
alpha = state_dict.pop(f"{lora_name}.alpha")
# merge down weight
down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim)
# merge up weight (sum of split_dim, rank*3)
split_dim, rank = up_weights[0].size()
qkv_dim = split_dim * 3
up_weight = torch.zeros((qkv_dim, down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype)
i = 0
for j in range(3):
up_weight[i : i + split_dim, j * rank : (j + 1) * rank] = up_weights[j]
i += split_dim
new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight
new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight
new_state_dict[f"{lora_name}.alpha"] = alpha
# print(
# f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}"
# )
print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha")
return new_state_dict
def apply_to(self, text_encoders, mmdit, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoders, mmdit, weights_sd, dtype=None, device=None):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if (
key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_L)
or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP_G)
or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5)
):
apply_text_encoder = True
elif key.startswith(LoRANetwork.LORA_PREFIX_SD3):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
logger.info(f"weights are merged")
def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio):
self.loraplus_lr_ratio = loraplus_lr_ratio
self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio
self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}")
logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}")
def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr):
# make sure text_encoder_lr as list of three elements
# if float, use the same value for all three
if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0):
text_encoder_lr = [default_lr, default_lr, default_lr]
elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int):
text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr), float(text_encoder_lr)]
elif len(text_encoder_lr) == 1:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0], text_encoder_lr[0]]
elif len(text_encoder_lr) == 2:
text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[1], text_encoder_lr[1]]
self.requires_grad_(True)
all_params = []
lr_descriptions = []
def assemble_params(loras, lr, loraplus_ratio):
param_groups = {"lora": {}, "plus": {}}
for lora in loras:
for name, param in lora.named_parameters():
if loraplus_ratio is not None and "lora_up" in name:
param_groups["plus"][f"{lora.lora_name}.{name}"] = param
else:
param_groups["lora"][f"{lora.lora_name}.{name}"] = param
params = []
descriptions = []
for key in param_groups.keys():
param_data = {"params": param_groups[key].values()}
if len(param_data["params"]) == 0:
continue
if lr is not None:
if key == "plus":
param_data["lr"] = lr * loraplus_ratio
else:
param_data["lr"] = lr
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None:
logger.info("NO LR skipping!")
continue
params.append(param_data)
descriptions.append("plus" if key == "plus" else "")
return params, descriptions
if self.text_encoder_loras:
loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio
# split text encoder loras for te1 and te3
te1_loras = [
lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_L)
]
te2_loras = [
lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP_G)
]
te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)]
if len(te1_loras) > 0:
logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}")
params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te2_loras) > 0:
logger.info(f"Text Encoder 2 (CLIP-G): {len(te2_loras)} modules, LR {text_encoder_lr[1]}")
params, descriptions = assemble_params(te2_loras, text_encoder_lr[1], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions])
if len(te3_loras) > 0:
logger.info(f"Text Encoder 3 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[2]}")
params, descriptions = assemble_params(te3_loras, text_encoder_lr[2], loraplus_lr_ratio)
all_params.extend(params)
lr_descriptions.extend(["textencoder 3 " + (" " + d if d else "") for d in descriptions])
if self.unet_loras:
params, descriptions = assemble_params(
self.unet_loras,
unet_lr if unet_lr is not None else default_lr,
self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio,
)
all_params.extend(params)
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions])
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# 重みのバックアップを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
for lora in loras:
org_module = lora.org_module_ref[0]
sd = org_module.state_dict()
org_weight = sd["weight"]
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
sd["weight"] = org_weight + lora_weight
assert sd["weight"].shape == org_weight.shape
org_module.load_state_dict(sd)
org_module._lora_restored = False
lora.enabled = False
def apply_max_norm_regularization(self, max_norm_value, device):
downkeys = []
upkeys = []
alphakeys = []
norms = []
keys_scaled = 0
state_dict = self.state_dict()
for key in state_dict.keys():
if "lora_down" in key and "weight" in key:
downkeys.append(key)
upkeys.append(key.replace("lora_down", "lora_up"))
alphakeys.append(key.replace("lora_down.weight", "alpha"))
for i in range(len(downkeys)):
down = state_dict[downkeys[i]].to(device)
up = state_dict[upkeys[i]].to(device)
alpha = state_dict[alphakeys[i]].to(device)
dim = down.shape[0]
scale = alpha / dim
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown *= scale
norm = updown.norm().clamp(min=max_norm_value / 2)
desired = torch.clamp(norm, max=max_norm_value)
ratio = desired.cpu() / norm.cpu()
sqrt_ratio = ratio**0.5
if ratio != 1:
keys_scaled += 1
state_dict[upkeys[i]] *= sqrt_ratio
state_dict[downkeys[i]] *= sqrt_ratio
scalednorm = updown.norm() * ratio
norms.append(scalednorm.item())
return keys_scaled, sum(norms) / len(norms), max(norms)
|