File size: 20,089 Bytes
abd09b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# convert key mapping and data format from some LoRA format to another
"""
Original LoRA format: Based on Black Forest Labs, QKV and MLP are unified into one module
alpha is scalar for each LoRA module

0 to 18
lora_unet_double_blocks_0_img_attn_proj.alpha torch.Size([])
lora_unet_double_blocks_0_img_attn_proj.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_attn_proj.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_img_attn_qkv.alpha torch.Size([])
lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight torch.Size([9216, 4])
lora_unet_double_blocks_0_img_mlp_0.alpha torch.Size([])
lora_unet_double_blocks_0_img_mlp_0.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_mlp_0.lora_up.weight torch.Size([12288, 4])
lora_unet_double_blocks_0_img_mlp_2.alpha torch.Size([])
lora_unet_double_blocks_0_img_mlp_2.lora_down.weight torch.Size([4, 12288])
lora_unet_double_blocks_0_img_mlp_2.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_img_mod_lin.alpha torch.Size([])
lora_unet_double_blocks_0_img_mod_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_mod_lin.lora_up.weight torch.Size([18432, 4])
lora_unet_double_blocks_0_txt_attn_proj.alpha torch.Size([])
lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_txt_attn_qkv.alpha torch.Size([])
lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight torch.Size([9216, 4])
lora_unet_double_blocks_0_txt_mlp_0.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight torch.Size([12288, 4])
lora_unet_double_blocks_0_txt_mlp_2.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight torch.Size([4, 12288])
lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_txt_mod_lin.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight torch.Size([18432, 4])

0 to 37
lora_unet_single_blocks_0_linear1.alpha torch.Size([])
lora_unet_single_blocks_0_linear1.lora_down.weight torch.Size([4, 3072])
lora_unet_single_blocks_0_linear1.lora_up.weight torch.Size([21504, 4])
lora_unet_single_blocks_0_linear2.alpha torch.Size([])
lora_unet_single_blocks_0_linear2.lora_down.weight torch.Size([4, 15360])
lora_unet_single_blocks_0_linear2.lora_up.weight torch.Size([3072, 4])
lora_unet_single_blocks_0_modulation_lin.alpha torch.Size([])
lora_unet_single_blocks_0_modulation_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_single_blocks_0_modulation_lin.lora_up.weight torch.Size([9216, 4])
"""
"""
ai-toolkit: Based on Diffusers, QKV and MLP are separated into 3 modules.
A is down, B is up. No alpha for each LoRA module.

0 to 18
transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight torch.Size([12288, 16])
transformer.transformer_blocks.0.ff.net.2.lora_A.weight torch.Size([16, 12288])
transformer.transformer_blocks.0.ff.net.2.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight torch.Size([12288, 16])
transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight torch.Size([16, 12288])
transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.norm1.linear.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.norm1.linear.lora_B.weight torch.Size([18432, 16])
transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight torch.Size([18432, 16])

0 to 37
transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.norm.linear.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.norm.linear.lora_B.weight torch.Size([9216, 16])
transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight torch.Size([12288, 16])
transformer.single_transformer_blocks.0.proj_out.lora_A.weight torch.Size([16, 15360])
transformer.single_transformer_blocks.0.proj_out.lora_B.weight torch.Size([3072, 16])
"""
"""
xlabs: Unknown format.
0 to 18
double_blocks.0.processor.proj_lora1.down.weight torch.Size([16, 3072])
double_blocks.0.processor.proj_lora1.up.weight torch.Size([3072, 16])
double_blocks.0.processor.proj_lora2.down.weight torch.Size([16, 3072])
double_blocks.0.processor.proj_lora2.up.weight torch.Size([3072, 16])
double_blocks.0.processor.qkv_lora1.down.weight torch.Size([16, 3072])
double_blocks.0.processor.qkv_lora1.up.weight torch.Size([9216, 16])
double_blocks.0.processor.qkv_lora2.down.weight torch.Size([16, 3072])
double_blocks.0.processor.qkv_lora2.up.weight torch.Size([9216, 16])
"""


import argparse
from safetensors.torch import save_file
from safetensors import safe_open
import torch


from library.utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)


def convert_to_sd_scripts(sds_sd, ait_sd, sds_key, ait_key):
    ait_down_key = ait_key + ".lora_A.weight"
    if ait_down_key not in ait_sd:
        return
    ait_up_key = ait_key + ".lora_B.weight"

    down_weight = ait_sd.pop(ait_down_key)
    sds_sd[sds_key + ".lora_down.weight"] = down_weight
    sds_sd[sds_key + ".lora_up.weight"] = ait_sd.pop(ait_up_key)
    rank = down_weight.shape[0]
    sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(rank, dtype=down_weight.dtype, device=down_weight.device)


def convert_to_sd_scripts_cat(sds_sd, ait_sd, sds_key, ait_keys):
    ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
    if ait_down_keys[0] not in ait_sd:
        return
    ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]

    down_weights = [ait_sd.pop(k) for k in ait_down_keys]
    up_weights = [ait_sd.pop(k) for k in ait_up_keys]

    # lora_down is concatenated along dim=0, so rank is multiplied by the number of splits
    rank = down_weights[0].shape[0]
    num_splits = len(ait_keys)
    sds_sd[sds_key + ".lora_down.weight"] = torch.cat(down_weights, dim=0)

    merged_up_weights = torch.zeros(
        (sum(w.shape[0] for w in up_weights), rank * num_splits),
        dtype=up_weights[0].dtype,
        device=up_weights[0].device,
    )

    i = 0
    for j, up_weight in enumerate(up_weights):
        merged_up_weights[i : i + up_weight.shape[0], j * rank : (j + 1) * rank] = up_weight
        i += up_weight.shape[0]

    sds_sd[sds_key + ".lora_up.weight"] = merged_up_weights

    # set alpha to new_rank
    new_rank = rank * num_splits
    sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(new_rank, dtype=down_weights[0].dtype, device=down_weights[0].device)


def convert_ai_toolkit_to_sd_scripts(ait_sd):
    sds_sd = {}
    for i in range(19):
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0"
        )
        convert_to_sd_scripts_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_double_blocks_{i}_img_attn_qkv",
            [
                f"transformer.transformer_blocks.{i}.attn.to_q",
                f"transformer.transformer_blocks.{i}.attn.to_k",
                f"transformer.transformer_blocks.{i}.attn.to_v",
            ],
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out"
        )
        convert_to_sd_scripts_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_double_blocks_{i}_txt_attn_qkv",
            [
                f"transformer.transformer_blocks.{i}.attn.add_q_proj",
                f"transformer.transformer_blocks.{i}.attn.add_k_proj",
                f"transformer.transformer_blocks.{i}.attn.add_v_proj",
            ],
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear"
        )

    for i in range(38):
        convert_to_sd_scripts_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_single_blocks_{i}_linear1",
            [
                f"transformer.single_transformer_blocks.{i}.attn.to_q",
                f"transformer.single_transformer_blocks.{i}.attn.to_k",
                f"transformer.single_transformer_blocks.{i}.attn.to_v",
                f"transformer.single_transformer_blocks.{i}.proj_mlp",
            ],
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out"
        )
        convert_to_sd_scripts(
            sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear"
        )

    if len(ait_sd) > 0:
        logger.warning(f"Unsuppored keys for sd-scripts: {ait_sd.keys()}")
    return sds_sd


def convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
    if sds_key + ".lora_down.weight" not in sds_sd:
        return
    down_weight = sds_sd.pop(sds_key + ".lora_down.weight")

    # scale weight by alpha and dim
    rank = down_weight.shape[0]
    alpha = sds_sd.pop(sds_key + ".alpha").item()  # alpha is scalar
    scale = alpha / rank  # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
    # print(f"rank: {rank}, alpha: {alpha}, scale: {scale}")

    # calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
    scale_down = scale
    scale_up = 1.0
    while scale_down * 2 < scale_up:
        scale_down *= 2
        scale_up /= 2
    # print(f"scale: {scale}, scale_down: {scale_down}, scale_up: {scale_up}")

    ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
    ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up


def convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
    if sds_key + ".lora_down.weight" not in sds_sd:
        return
    down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
    up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
    sd_lora_rank = down_weight.shape[0]

    # scale weight by alpha and dim
    alpha = sds_sd.pop(sds_key + ".alpha")
    scale = alpha / sd_lora_rank

    # calculate scale_down and scale_up
    scale_down = scale
    scale_up = 1.0
    while scale_down * 2 < scale_up:
        scale_down *= 2
        scale_up /= 2

    down_weight = down_weight * scale_down
    up_weight = up_weight * scale_up

    # calculate dims if not provided
    num_splits = len(ait_keys)
    if dims is None:
        dims = [up_weight.shape[0] // num_splits] * num_splits
    else:
        assert sum(dims) == up_weight.shape[0]

    # check upweight is sparse or not
    is_sparse = False
    if sd_lora_rank % num_splits == 0:
        ait_rank = sd_lora_rank // num_splits
        is_sparse = True
        i = 0
        for j in range(len(dims)):
            for k in range(len(dims)):
                if j == k:
                    continue
                is_sparse = is_sparse and torch.all(up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0)
            i += dims[j]
        if is_sparse:
            logger.info(f"weight is sparse: {sds_key}")

    # make ai-toolkit weight
    ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
    ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
    if not is_sparse:
        # down_weight is copied to each split
        ait_sd.update({k: down_weight for k in ait_down_keys})

        # up_weight is split to each split
        ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))})
    else:
        # down_weight is chunked to each split
        ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))})

        # up_weight is sparse: only non-zero values are copied to each split
        i = 0
        for j in range(len(dims)):
            ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
            i += dims[j]


def convert_sd_scripts_to_ai_toolkit(sds_sd):
    ait_sd = {}
    for i in range(19):
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0"
        )
        convert_to_ai_toolkit_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_double_blocks_{i}_img_attn_qkv",
            [
                f"transformer.transformer_blocks.{i}.attn.to_q",
                f"transformer.transformer_blocks.{i}.attn.to_k",
                f"transformer.transformer_blocks.{i}.attn.to_v",
            ],
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out"
        )
        convert_to_ai_toolkit_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_double_blocks_{i}_txt_attn_qkv",
            [
                f"transformer.transformer_blocks.{i}.attn.add_q_proj",
                f"transformer.transformer_blocks.{i}.attn.add_k_proj",
                f"transformer.transformer_blocks.{i}.attn.add_v_proj",
            ],
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear"
        )

    for i in range(38):
        convert_to_ai_toolkit_cat(
            sds_sd,
            ait_sd,
            f"lora_unet_single_blocks_{i}_linear1",
            [
                f"transformer.single_transformer_blocks.{i}.attn.to_q",
                f"transformer.single_transformer_blocks.{i}.attn.to_k",
                f"transformer.single_transformer_blocks.{i}.attn.to_v",
                f"transformer.single_transformer_blocks.{i}.proj_mlp",
            ],
            dims=[3072, 3072, 3072, 12288],
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out"
        )
        convert_to_ai_toolkit(
            sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear"
        )

    if len(sds_sd) > 0:
        logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}")
    return ait_sd


def main(args):
    # load source safetensors
    logger.info(f"Loading source file {args.src_path}")
    state_dict = {}
    with safe_open(args.src_path, framework="pt") as f:
        metadata = f.metadata()
        for k in f.keys():
            state_dict[k] = f.get_tensor(k)

    logger.info(f"Converting {args.src} to {args.dst} format")
    if args.src == "ai-toolkit" and args.dst == "sd-scripts":
        state_dict = convert_ai_toolkit_to_sd_scripts(state_dict)
    elif args.src == "sd-scripts" and args.dst == "ai-toolkit":
        state_dict = convert_sd_scripts_to_ai_toolkit(state_dict)

        # eliminate 'shared tensors' 
        for k in list(state_dict.keys()):
            state_dict[k] = state_dict[k].detach().clone()
    else:
        raise NotImplementedError(f"Conversion from {args.src} to {args.dst} is not supported")

    # save destination safetensors
    logger.info(f"Saving destination file {args.dst_path}")
    save_file(state_dict, args.dst_path, metadata=metadata)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Convert LoRA format")
    parser.add_argument("--src", type=str, default="ai-toolkit", help="source format, ai-toolkit or sd-scripts")
    parser.add_argument("--dst", type=str, default="sd-scripts", help="destination format, ai-toolkit or sd-scripts")
    parser.add_argument("--src_path", type=str, default=None, help="source path")
    parser.add_argument("--dst_path", type=str, default=None, help="destination path")
    args = parser.parse_args()
    main(args)