Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,089 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# convert key mapping and data format from some LoRA format to another
"""
Original LoRA format: Based on Black Forest Labs, QKV and MLP are unified into one module
alpha is scalar for each LoRA module
0 to 18
lora_unet_double_blocks_0_img_attn_proj.alpha torch.Size([])
lora_unet_double_blocks_0_img_attn_proj.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_attn_proj.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_img_attn_qkv.alpha torch.Size([])
lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight torch.Size([9216, 4])
lora_unet_double_blocks_0_img_mlp_0.alpha torch.Size([])
lora_unet_double_blocks_0_img_mlp_0.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_mlp_0.lora_up.weight torch.Size([12288, 4])
lora_unet_double_blocks_0_img_mlp_2.alpha torch.Size([])
lora_unet_double_blocks_0_img_mlp_2.lora_down.weight torch.Size([4, 12288])
lora_unet_double_blocks_0_img_mlp_2.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_img_mod_lin.alpha torch.Size([])
lora_unet_double_blocks_0_img_mod_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_img_mod_lin.lora_up.weight torch.Size([18432, 4])
lora_unet_double_blocks_0_txt_attn_proj.alpha torch.Size([])
lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_txt_attn_qkv.alpha torch.Size([])
lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight torch.Size([9216, 4])
lora_unet_double_blocks_0_txt_mlp_0.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight torch.Size([12288, 4])
lora_unet_double_blocks_0_txt_mlp_2.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight torch.Size([4, 12288])
lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight torch.Size([3072, 4])
lora_unet_double_blocks_0_txt_mod_lin.alpha torch.Size([])
lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight torch.Size([18432, 4])
0 to 37
lora_unet_single_blocks_0_linear1.alpha torch.Size([])
lora_unet_single_blocks_0_linear1.lora_down.weight torch.Size([4, 3072])
lora_unet_single_blocks_0_linear1.lora_up.weight torch.Size([21504, 4])
lora_unet_single_blocks_0_linear2.alpha torch.Size([])
lora_unet_single_blocks_0_linear2.lora_down.weight torch.Size([4, 15360])
lora_unet_single_blocks_0_linear2.lora_up.weight torch.Size([3072, 4])
lora_unet_single_blocks_0_modulation_lin.alpha torch.Size([])
lora_unet_single_blocks_0_modulation_lin.lora_down.weight torch.Size([4, 3072])
lora_unet_single_blocks_0_modulation_lin.lora_up.weight torch.Size([9216, 4])
"""
"""
ai-toolkit: Based on Diffusers, QKV and MLP are separated into 3 modules.
A is down, B is up. No alpha for each LoRA module.
0 to 18
transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight torch.Size([12288, 16])
transformer.transformer_blocks.0.ff.net.2.lora_A.weight torch.Size([16, 12288])
transformer.transformer_blocks.0.ff.net.2.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight torch.Size([12288, 16])
transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight torch.Size([16, 12288])
transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight torch.Size([3072, 16])
transformer.transformer_blocks.0.norm1.linear.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.norm1.linear.lora_B.weight torch.Size([18432, 16])
transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight torch.Size([16, 3072])
transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight torch.Size([18432, 16])
0 to 37
transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16])
transformer.single_transformer_blocks.0.norm.linear.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.norm.linear.lora_B.weight torch.Size([9216, 16])
transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight torch.Size([16, 3072])
transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight torch.Size([12288, 16])
transformer.single_transformer_blocks.0.proj_out.lora_A.weight torch.Size([16, 15360])
transformer.single_transformer_blocks.0.proj_out.lora_B.weight torch.Size([3072, 16])
"""
"""
xlabs: Unknown format.
0 to 18
double_blocks.0.processor.proj_lora1.down.weight torch.Size([16, 3072])
double_blocks.0.processor.proj_lora1.up.weight torch.Size([3072, 16])
double_blocks.0.processor.proj_lora2.down.weight torch.Size([16, 3072])
double_blocks.0.processor.proj_lora2.up.weight torch.Size([3072, 16])
double_blocks.0.processor.qkv_lora1.down.weight torch.Size([16, 3072])
double_blocks.0.processor.qkv_lora1.up.weight torch.Size([9216, 16])
double_blocks.0.processor.qkv_lora2.down.weight torch.Size([16, 3072])
double_blocks.0.processor.qkv_lora2.up.weight torch.Size([9216, 16])
"""
import argparse
from safetensors.torch import save_file
from safetensors import safe_open
import torch
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def convert_to_sd_scripts(sds_sd, ait_sd, sds_key, ait_key):
ait_down_key = ait_key + ".lora_A.weight"
if ait_down_key not in ait_sd:
return
ait_up_key = ait_key + ".lora_B.weight"
down_weight = ait_sd.pop(ait_down_key)
sds_sd[sds_key + ".lora_down.weight"] = down_weight
sds_sd[sds_key + ".lora_up.weight"] = ait_sd.pop(ait_up_key)
rank = down_weight.shape[0]
sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(rank, dtype=down_weight.dtype, device=down_weight.device)
def convert_to_sd_scripts_cat(sds_sd, ait_sd, sds_key, ait_keys):
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
if ait_down_keys[0] not in ait_sd:
return
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
down_weights = [ait_sd.pop(k) for k in ait_down_keys]
up_weights = [ait_sd.pop(k) for k in ait_up_keys]
# lora_down is concatenated along dim=0, so rank is multiplied by the number of splits
rank = down_weights[0].shape[0]
num_splits = len(ait_keys)
sds_sd[sds_key + ".lora_down.weight"] = torch.cat(down_weights, dim=0)
merged_up_weights = torch.zeros(
(sum(w.shape[0] for w in up_weights), rank * num_splits),
dtype=up_weights[0].dtype,
device=up_weights[0].device,
)
i = 0
for j, up_weight in enumerate(up_weights):
merged_up_weights[i : i + up_weight.shape[0], j * rank : (j + 1) * rank] = up_weight
i += up_weight.shape[0]
sds_sd[sds_key + ".lora_up.weight"] = merged_up_weights
# set alpha to new_rank
new_rank = rank * num_splits
sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(new_rank, dtype=down_weights[0].dtype, device=down_weights[0].device)
def convert_ai_toolkit_to_sd_scripts(ait_sd):
sds_sd = {}
for i in range(19):
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0"
)
convert_to_sd_scripts_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.to_q",
f"transformer.transformer_blocks.{i}.attn.to_k",
f"transformer.transformer_blocks.{i}.attn.to_v",
],
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out"
)
convert_to_sd_scripts_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
],
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear"
)
for i in range(38):
convert_to_sd_scripts_cat(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear1",
[
f"transformer.single_transformer_blocks.{i}.attn.to_q",
f"transformer.single_transformer_blocks.{i}.attn.to_k",
f"transformer.single_transformer_blocks.{i}.attn.to_v",
f"transformer.single_transformer_blocks.{i}.proj_mlp",
],
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out"
)
convert_to_sd_scripts(
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear"
)
if len(ait_sd) > 0:
logger.warning(f"Unsuppored keys for sd-scripts: {ait_sd.keys()}")
return sds_sd
def convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
# scale weight by alpha and dim
rank = down_weight.shape[0]
alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
# print(f"rank: {rank}, alpha: {alpha}, scale: {scale}")
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
# print(f"scale: {scale}, scale_down: {scale_down}, scale_up: {scale_up}")
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up
def convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
sd_lora_rank = down_weight.shape[0]
# scale weight by alpha and dim
alpha = sds_sd.pop(sds_key + ".alpha")
scale = alpha / sd_lora_rank
# calculate scale_down and scale_up
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
# calculate dims if not provided
num_splits = len(ait_keys)
if dims is None:
dims = [up_weight.shape[0] // num_splits] * num_splits
else:
assert sum(dims) == up_weight.shape[0]
# check upweight is sparse or not
is_sparse = False
if sd_lora_rank % num_splits == 0:
ait_rank = sd_lora_rank // num_splits
is_sparse = True
i = 0
for j in range(len(dims)):
for k in range(len(dims)):
if j == k:
continue
is_sparse = is_sparse and torch.all(up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0)
i += dims[j]
if is_sparse:
logger.info(f"weight is sparse: {sds_key}")
# make ai-toolkit weight
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
if not is_sparse:
# down_weight is copied to each split
ait_sd.update({k: down_weight for k in ait_down_keys})
# up_weight is split to each split
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))})
else:
# down_weight is chunked to each split
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))})
# up_weight is sparse: only non-zero values are copied to each split
i = 0
for j in range(len(dims)):
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
i += dims[j]
def convert_sd_scripts_to_ai_toolkit(sds_sd):
ait_sd = {}
for i in range(19):
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0"
)
convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.to_q",
f"transformer.transformer_blocks.{i}.attn.to_k",
f"transformer.transformer_blocks.{i}.attn.to_v",
],
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out"
)
convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
],
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear"
)
for i in range(38):
convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear1",
[
f"transformer.single_transformer_blocks.{i}.attn.to_q",
f"transformer.single_transformer_blocks.{i}.attn.to_k",
f"transformer.single_transformer_blocks.{i}.attn.to_v",
f"transformer.single_transformer_blocks.{i}.proj_mlp",
],
dims=[3072, 3072, 3072, 12288],
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out"
)
convert_to_ai_toolkit(
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear"
)
if len(sds_sd) > 0:
logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}")
return ait_sd
def main(args):
# load source safetensors
logger.info(f"Loading source file {args.src_path}")
state_dict = {}
with safe_open(args.src_path, framework="pt") as f:
metadata = f.metadata()
for k in f.keys():
state_dict[k] = f.get_tensor(k)
logger.info(f"Converting {args.src} to {args.dst} format")
if args.src == "ai-toolkit" and args.dst == "sd-scripts":
state_dict = convert_ai_toolkit_to_sd_scripts(state_dict)
elif args.src == "sd-scripts" and args.dst == "ai-toolkit":
state_dict = convert_sd_scripts_to_ai_toolkit(state_dict)
# eliminate 'shared tensors'
for k in list(state_dict.keys()):
state_dict[k] = state_dict[k].detach().clone()
else:
raise NotImplementedError(f"Conversion from {args.src} to {args.dst} is not supported")
# save destination safetensors
logger.info(f"Saving destination file {args.dst_path}")
save_file(state_dict, args.dst_path, metadata=metadata)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert LoRA format")
parser.add_argument("--src", type=str, default="ai-toolkit", help="source format, ai-toolkit or sd-scripts")
parser.add_argument("--dst", type=str, default="sd-scripts", help="destination format, ai-toolkit or sd-scripts")
parser.add_argument("--src_path", type=str, default=None, help="source path")
parser.add_argument("--dst_path", type=str, default=None, help="destination path")
args = parser.parse_args()
main(args)
|