File size: 20,565 Bytes
eaa3d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import gradio as gr
import json
from tqdm import tqdm
import numpy as np
import random
import torch
import ast
from difflib import HtmlDiff

from src.kg.main import script2kg
from src.summary.summarizer import Summarizer
from src.summary.utils import preprocess_script, chunk_script_gpt
from src.summary.prompt import build_summarizer_prompt
from src.fact.narrativefactscore import NarrativeFactScore

def _set_seed(seed):
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

def parse_scenes(scene_text):
    try:
        return json.loads(scene_text)
    except json.JSONDecodeError:
        return ast.literal_eval(scene_text)

def set_name_list(dataset, data_type):
    if dataset == "MovieSum":
        if data_type == "train":
            return ['8MM_1999', 'The Iron Lady_2011', 'Adventureland_2009', 'Napoleon_2023', 
                   'Kubo and the Two Strings_2016', 'The Woman King_2022', 'What They Had_2018', 
                   'Synecdoche, New York_2008', 'Black Christmas_2006', 'Superbad_2007']
        elif data_type == "validation":
            return ['The Boondock Saints_1999', 'The House with a Clock in Its Walls_2018',
                   'The Unbelievable Truth_1989', 'Insidious_2010', 'If Beale Street Could Talk_2018',
                   'The Battle of Shaker Heights_2003', '20th Century Women_2016', 
                   'Captain Phillips_2013', 'Conspiracy Theory_1997', 'Domino_2005']
        elif data_type == "test":
            # Return test dataset names (shortened for brevity)
            return ['A Nightmare on Elm Street 3: Dream Warriors_1987', 'Van Helsing_2004', 
                   'Oppenheimer_2023', 'Armored_2009', 'The Martian_2015']
    elif dataset == "MENSA":
        if data_type == "train":
            return ['The_Ides_of_March_(film)', 'An_American_Werewolf_in_Paris',
                   'Batman_&_Robin_(film)', 'Airplane_II:_The_Sequel', 'Krull_(film)']
        elif data_type == "validation":
            return ['Pleasantville_(film)', 'V_for_Vendetta_(film)',
                   'Mary_Shelleys_Frankenstein_(film)', 'Rapture_(1965_film)', 'Get_Out']
        elif data_type == "test":
            return ['Knives_Out', 'Black_Panther', 'Pet_Sematary_(film)',
                   'Panic_Room', 'The_Village_(2004_film)']
    return []

def update_name_list_interface(dataset, data_type):
    if dataset in ["MovieSum", "MENSA"]:
        return (
            gr.update(choices=set_name_list(dataset, data_type), value=None, visible=True),
            gr.update(visible=False),
            gr.update(value="")
        )
    else:
        return (
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(value="Click next 'Knowledge Graph' to continue")
        )

def read_data(dataset, data_type):
    file_path = f"dataset/{dataset}/{data_type}.jsonl"
    try:
        with open(file_path, 'r', encoding='utf8') as f:
            data = [json.loads(line) for line in f]
        return data
    except FileNotFoundError:
        return []

def find_work_index(data, work_name):
    for idx, entry in enumerate(data):
        if entry.get("name") == work_name:
            return idx, entry
    return None, "Work not found in the selected dataset."

def get_narrative_content(dataset, data_type, work):
    data = read_data(dataset, data_type)
    for entry in data:
        if entry.get("name") == work:
            return entry['scenes']
    return "Work not found in the selected dataset."

def get_narrative_content_with_index(dataset, data_type, work):
    data = read_data(dataset, data_type)
    for idx, entry in enumerate(data):
        if entry.get("name") == work:
            # For MovieSum and MENSA datasets, only return scenes
            if dataset in ["MovieSum", "MENSA"]:
                return "\n".join(entry['scenes']), idx, data
            # For other datasets or custom input, return full content
            return entry, idx, data
    return "Work not found in the selected dataset.", None, None

def show_diff(original, revised):
    d = HtmlDiff()
    original_lines = original.splitlines(keepends=True)
    revised_lines = revised.splitlines(keepends=True)
    diff_table = d.make_table(original_lines, revised_lines, fromdesc='Original Summary', todesc='Refined Summary', context=True, numlines=2)
    return diff_table

def extract_initial_summary(summary_result):
    return summary_result['summary_agg']['summaries']

def extract_factuality_score_and_details(fact_score_result):
    factuality_score = fact_score_result['fact_score']
    feedback_list = []
    for i, feedback_data in enumerate(fact_score_result['summary_feedback_pairs']):
        feedbacks = [fb for fb in feedback_data['feedbacks'] if fb.strip()]
        if feedbacks:
            feedback_list.append(f"In chunk {i + 1}: {'; '.join(feedbacks)}")
    incorrect_details = "\n".join(feedback_list)
    return factuality_score, incorrect_details

def build_kg(script, idx, api_key, model_id):
    kg = script2kg(script['scenes'], idx, script['name'], api_key, model_id)
    return kg

def build_kg_custom(scenes, idx, api_key, model_id):
    kg = script2kg(scenes, idx, "custom", api_key, model_id)
    return kg

def build_kg_with_data(data, work_index, custom_scenes, api_key, model_id):
    if data and work_index is not None:  # Dataset mode
        script = data[int(work_index)]
        try:
            kg = script2kg(script['scenes'], int(work_index), script['name'], api_key, model_id)
            return kg, "Knowledge Graph built successfully!"
        except Exception as e:
            return None, f"Error building knowledge graph: {str(e)}"
    elif custom_scenes:  # Custom script mode
        try:
            scenes = parse_scenes(custom_scenes)
            if not isinstance(scenes, list):
                return None, "Invalid format. Please provide scenes as a list."
            kg = build_kg_custom(scenes, 0, api_key, model_id)
            return kg, "Knowledge Graph built successfully!"
        except (json.JSONDecodeError, SyntaxError, ValueError) as e:
            return None, f"Invalid format. Error: {str(e)}"
        except Exception as e:
            return None, f"Error building knowledge graph: {str(e)}"
    return None, "Please select a work or input custom scenes."

def generate_summary(script, idx, api_key, model_id):
    _set_seed(42)
    scripty_summarizer = Summarizer(
        inference_mode="org",
        model_id=model_id,
        api_key=api_key,
        dtype="float16",
        seed=42
    )
    scenes = [f"s#{i}\n{s}" for i, s in enumerate(script['scenes'])]
    script = "\n\n".join(scenes)
    script_chunks = chunk_script_gpt(script=script, model_id=model_id, chunk_size=2048)

    script_summaries = []
    for chunk in tqdm(script_chunks):
        chunk = preprocess_script(chunk)
        prompt = build_summarizer_prompt(
            prompt_template="./templates/external_summary.txt",
            input_text_list=[chunk]
        )
        script_summ = scripty_summarizer.inference_with_gpt(prompt=prompt)
        script_summaries.append(script_summ.strip())

    elem_dict_list = []
    agg_dict = {
        'script': ' '.join(script_chunks),
        'summaries': ' '.join(script_summaries)
    }

    for i, (chunk, summary) in enumerate(zip(script_chunks, script_summaries)):
        elem_dict = {
            "chunk_index": i,
            "chunk": chunk.strip(),
            "summary": summary.strip()
        }
        elem_dict_list.append(elem_dict)

    processed_dataset = {
        "script": script,
        "scenes": scenes,
        "script_chunks": script_chunks,
        "script_summaries": script_summaries,
    }

    return {"summary_sep": elem_dict_list, "summary_agg": agg_dict, "processed_dataset": processed_dataset}

def generate_summary_with_data(data, work_index, custom_scenes, api_key, model_id):
    if data and work_index is not None:  # Dataset mode
        script = data[int(work_index)]
        try:
            summary = generate_summary(script, int(work_index), api_key, model_id)
            return summary, extract_initial_summary(summary)
        except Exception as e:
            return None, f"Error generating summary: {str(e)}"
    elif custom_scenes:  # Custom script mode
        try:
            scenes = parse_scenes(custom_scenes)
            if not isinstance(scenes, list):
                return None, "Invalid format. Please provide scenes as a list."
            script = {"name": "custom", "scenes": scenes}
            summary = generate_summary(script, 0, api_key, model_id)
            return summary, extract_initial_summary(summary)
        except (json.JSONDecodeError, SyntaxError, ValueError) as e:
            return None, f"Invalid format. Error: {str(e)}"
        except Exception as e:
            return None, f"Error generating summary: {str(e)}"
    return None, "Please select a work or input custom scenes."

def calculate_narrative_fact_score(summary, kg_raw, api_key, model_id):
    _set_seed(42)
    factscorer = NarrativeFactScore(split_type='gpt', model='gptscore', api_key=api_key, model_id=model_id)

    summary = summary['processed_dataset']
    chunks, summaries = summary['script_chunks'], summary['script_summaries']
    total_output = {'fact_score': 0, 'summary_feedback_pairs': []}
    partial_output = {'fact_score': 0, 'summary_feedback_pairs': []}
    total_score = 0
    kg = []
    for elem in kg_raw:
        if elem['subject'] == elem['object']:
            kg.append(f"{elem['subject']} {elem['predicate']}")
        else:
            kg.append(f"{elem['subject']} {elem['predicate']} {elem['object']}")

    scores, scores_per_sent, relevant_scenes, summary_chunks, feedbacks = factscorer.score_src_hyp_long(chunks, summaries, kg)
    for i, score in enumerate(scores):
        output_elem = {
            'src': chunks[i],
            'summary': summaries[i],
            'score': score,
            'scores_per_sent': scores_per_sent[i],
            'relevant_scenes': relevant_scenes[i],
            'summary_chunks': summary_chunks[i],
            'feedbacks': feedbacks[i],
        }
        output_elem_part = {
            'scores_per_sent': scores_per_sent[i],
            'summary_chunks': summary_chunks[i],
            'feedbacks': feedbacks[i],
        }
        total_output['summary_feedback_pairs'].append(output_elem)
        partial_output['summary_feedback_pairs'].append(output_elem_part)
        total_score += score

    total_output['fact_score'] = float(total_score / len(scores))
    partial_output['fact_score'] = float(total_score / len(scores))
    return total_output, partial_output

def refine_summary(summary, fact_score, api_key, model_id):
    _set_seed(42)
    threshold = 0.9
    summarizer = Summarizer(
        inference_mode="org",
        model_id=model_id,
        api_key=api_key,
        dtype="float16",
        seed=42
    )

    processed_dataset = {
        "script": summary["script"],
        "scenes": summary["scenes"],
        "script_chunks": [],
        "script_summaries": []
    }
    elem_dict_list = []
    agg_dict = {}

    for factscore_chunk in tqdm(fact_score['summary_feedback_pairs']):
        src_chunk = factscore_chunk['src']
        original_summary = factscore_chunk['summary']

        if factscore_chunk['score'] >= threshold:
            processed_dataset["script_chunks"].append(src_chunk)
            processed_dataset["script_summaries"].append(original_summary.strip())
            continue

        hallu_idxs = np.where(np.array(factscore_chunk['scores_per_sent']) == 0)[0]
        hallu_summary_parts = np.array(factscore_chunk['summary_chunks'])[hallu_idxs]
        feedbacks = np.array(factscore_chunk['feedbacks'])[hallu_idxs]

        prompt = build_summarizer_prompt(
            prompt_template="./templates/self_correction.txt",
            input_text_list=[src_chunk, original_summary]
        )

        for j, (hallu_summ, feedback) in enumerate(zip(hallu_summary_parts, feedbacks)):
            prompt += f"\n- Statement to Revise {j + 1}: {hallu_summ} (Reason for Revision: {feedback})"
        prompt += "\n- Revised Summary: "

        revised_summary = summarizer.inference_with_gpt(prompt=prompt)

        if len(revised_summary.strip()) == 0:
            revised_summary = original_summary

        processed_dataset["script_chunks"].append(src_chunk)
        processed_dataset["script_summaries"].append(revised_summary)

        elem_dict = {
            "chunk_index": len(processed_dataset["script_chunks"]) - 1,
            "chunk": src_chunk.strip(),
            "summary": revised_summary.strip(),
            "org_summary": original_summary.strip(),
            "hallu_in_summary": list(hallu_summary_parts),
            "feedbacks": list(feedbacks),
        }
        elem_dict_list.append(elem_dict)

    agg_dict['script'] = summary['script']
    agg_dict['summaries'] = ' '.join(processed_dataset["script_summaries"])

    return {
        "summary_sep": elem_dict_list,
        "summary_agg": agg_dict,
        "processed_dataset": processed_dataset
    }

def refine_summary_and_return_diff(summary, fact_score, api_key, model_id):
    refined_summary = refine_summary(summary['processed_dataset'], fact_score, api_key, model_id)
    diff = HtmlDiff().make_file(
        summary['summary_agg']['summaries'].splitlines(),
        refined_summary['summary_agg']['summaries'].splitlines(),
        context=True
    )
    return diff

def open_kg(kg_data):
    if kg_data is None:
        return "Please build the knowledge graph first."
    try:
        with open('refined_kg.html', 'r', encoding='utf-8') as f:
            html_content = f.read()
        return f'''
            <iframe 
                srcdoc="{html_content.replace('"', '&quot;')}"
                style="width: 100%; height: 500px; border: none;"
            ></iframe>
        '''
    except Exception as e:
        return f'<div style="color: red;">Error reading KG file: {str(e)}</div>'

def format_fact_score_output(fact_score_result):
    if not fact_score_result:
        return "No factuality analysis available"
    
    formatted_output = []
    
    # Overall score
    formatted_output.append(f"Overall Factuality Score: {fact_score_result['fact_score']*100:.1f}%\n")
    
    # Individual chunk analysis
    for i, chunk in enumerate(fact_score_result['summary_feedback_pairs'], 1):
        formatted_output.append(f"\nChunk {i} Analysis:")
        formatted_output.append("Original Text:")
        formatted_output.append(f"{' '.join(chunk['summary_chunks'])}\n")
        
        if chunk['feedbacks']:
            formatted_output.append("Feedback:")
            feedbacks = [f"• {feedback}" for feedback in chunk['feedbacks'] if feedback.strip()]
            formatted_output.extend(feedbacks)
        
        formatted_output.append("-" * 80)
    
    return "\n".join(formatted_output)


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # NarrativeFactScore: Script Factuality Evaluation
        Evaluate and refine script summaries using narrative factuality scoring.
        """
    )
    
    with gr.Accordion("Model Settings", open=True):
        with gr.Row():
            api_key_input = gr.Textbox(
                label="GPT API Key",
                placeholder="Enter your GPT API key",
                type="password",
                scale=2
            )
            model_selector = gr.Dropdown(
                choices=[
                    "gpt-4o-mini",
                    "gpt-4o",
                    "gpt-4-turbo",
                    "gpt-3.5-turbo-0125"
                ],
                value="gpt-4o",
                label="Model Selection",
                scale=1
            )
    
    with gr.Tabs():
        with gr.TabItem("Dataset Selection"):
            with gr.Row():
                dataset_selector = gr.Radio(
                    choices=["MovieSum", "MENSA", "Custom"],
                    label="Dataset",
                    info="Choose the dataset or input custom script"
                )
                data_type_selector = gr.Radio(
                    choices=["train", "validation", "test"],
                    label="Split Type",
                    info="Select data split",
                    visible=True
                )
            name_list = gr.Dropdown(
                choices=[],
                label="Select Script",
                info="Choose a script to analyze",
                visible=True
            )
            custom_input = gr.Textbox(
                label="Custom Script Input",
                info="Enter scenes as a JSON list: ['scene1', 'scene2', ...]",
                lines=10,
                visible=False
            )
            narrative_output = gr.Textbox(
                label="Script Content",
                interactive=False,
                lines=10
            )
            
        with gr.TabItem("Knowledge Graph"):
            with gr.Row():
                generate_kg_button = gr.Button(
                    "Generate Knowledge Graph",
                    variant="primary"
                )
                open_kg_button = gr.Button("View Graph")
            kg_status = gr.Textbox(
                label="Status",
                interactive=False
            )
            kg_viewer = gr.HTML(label="Knowledge Graph Visualization")
            
        with gr.TabItem("Summary Generation"):
            generate_summary_button = gr.Button(
                "Generate Initial Summary",
                variant="primary"
            )
            summary_output = gr.Textbox(
                label="Generated Summary",
                interactive=False,
                lines=5
            )
            calculate_score_button = gr.Button("Calculate Factuality Score")
            fact_score_display = gr.Textbox(
                label="Factuality Analysis",
                interactive=False,
                lines=10
            )
                
        with gr.TabItem("Summary Refinement"):
            refine_button = gr.Button(
                "Refine Summary",
                variant="primary"
            )
            refined_output = gr.HTML(label="Refined Summary with Changes")

    # Hidden states
    work_index = gr.State()
    data_state = gr.State()
    kg_output = gr.State()
    summary_state = gr.State()
    fact_score_state = gr.State()

    # Event handlers
    dataset_selector.change(
        fn=lambda x: gr.update(visible=x in ["MovieSum", "MENSA"]),
        inputs=[dataset_selector],
        outputs=data_type_selector
    )
    
    dataset_selector.change(
        fn=update_name_list_interface,
        inputs=[dataset_selector, data_type_selector],
        outputs=[name_list, custom_input, narrative_output]
    )
    
    name_list.change(
        fn=get_narrative_content_with_index,
        inputs=[dataset_selector, data_type_selector, name_list],
        outputs=[narrative_output, work_index, data_state]
    )
    
    generate_kg_button.click(
        fn=build_kg_with_data,
        inputs=[
            data_state,      # data
            work_index,      # work_index
            custom_input,    # custom_scenes
            api_key_input,   # api_key
            model_selector   # model_id
        ],
        outputs=[kg_output, kg_status]
    )
    
    open_kg_button.click(
        fn=open_kg,
        inputs=[kg_output],
        outputs=kg_viewer
    )
    
    generate_summary_button.click(
        fn=generate_summary_with_data,
        inputs=[data_state, work_index, custom_input, api_key_input, model_selector],
        outputs=[summary_state, summary_output]
    )
    
    calculate_score_button.click(
        fn=lambda summary, kg, api_key, model: (
            *calculate_narrative_fact_score(summary, kg, api_key, model),
            format_fact_score_output(calculate_narrative_fact_score(summary, kg, api_key, model)[0])
        ),
        inputs=[summary_state, kg_output, api_key_input, model_selector],
        outputs=[fact_score_state, fact_score_display]
    )
        
    refine_button.click(
        fn=refine_summary_and_return_diff,
        inputs=[summary_state, fact_score_state, api_key_input, model_selector],
        outputs=refined_output
    )

if __name__ == "__main__":
    demo.launch()