Spaces:
Sleeping
Sleeping
File size: 20,565 Bytes
eaa3d8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import gradio as gr
import json
from tqdm import tqdm
import numpy as np
import random
import torch
import ast
from difflib import HtmlDiff
from src.kg.main import script2kg
from src.summary.summarizer import Summarizer
from src.summary.utils import preprocess_script, chunk_script_gpt
from src.summary.prompt import build_summarizer_prompt
from src.fact.narrativefactscore import NarrativeFactScore
def _set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_scenes(scene_text):
try:
return json.loads(scene_text)
except json.JSONDecodeError:
return ast.literal_eval(scene_text)
def set_name_list(dataset, data_type):
if dataset == "MovieSum":
if data_type == "train":
return ['8MM_1999', 'The Iron Lady_2011', 'Adventureland_2009', 'Napoleon_2023',
'Kubo and the Two Strings_2016', 'The Woman King_2022', 'What They Had_2018',
'Synecdoche, New York_2008', 'Black Christmas_2006', 'Superbad_2007']
elif data_type == "validation":
return ['The Boondock Saints_1999', 'The House with a Clock in Its Walls_2018',
'The Unbelievable Truth_1989', 'Insidious_2010', 'If Beale Street Could Talk_2018',
'The Battle of Shaker Heights_2003', '20th Century Women_2016',
'Captain Phillips_2013', 'Conspiracy Theory_1997', 'Domino_2005']
elif data_type == "test":
# Return test dataset names (shortened for brevity)
return ['A Nightmare on Elm Street 3: Dream Warriors_1987', 'Van Helsing_2004',
'Oppenheimer_2023', 'Armored_2009', 'The Martian_2015']
elif dataset == "MENSA":
if data_type == "train":
return ['The_Ides_of_March_(film)', 'An_American_Werewolf_in_Paris',
'Batman_&_Robin_(film)', 'Airplane_II:_The_Sequel', 'Krull_(film)']
elif data_type == "validation":
return ['Pleasantville_(film)', 'V_for_Vendetta_(film)',
'Mary_Shelleys_Frankenstein_(film)', 'Rapture_(1965_film)', 'Get_Out']
elif data_type == "test":
return ['Knives_Out', 'Black_Panther', 'Pet_Sematary_(film)',
'Panic_Room', 'The_Village_(2004_film)']
return []
def update_name_list_interface(dataset, data_type):
if dataset in ["MovieSum", "MENSA"]:
return (
gr.update(choices=set_name_list(dataset, data_type), value=None, visible=True),
gr.update(visible=False),
gr.update(value="")
)
else:
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(value="Click next 'Knowledge Graph' to continue")
)
def read_data(dataset, data_type):
file_path = f"dataset/{dataset}/{data_type}.jsonl"
try:
with open(file_path, 'r', encoding='utf8') as f:
data = [json.loads(line) for line in f]
return data
except FileNotFoundError:
return []
def find_work_index(data, work_name):
for idx, entry in enumerate(data):
if entry.get("name") == work_name:
return idx, entry
return None, "Work not found in the selected dataset."
def get_narrative_content(dataset, data_type, work):
data = read_data(dataset, data_type)
for entry in data:
if entry.get("name") == work:
return entry['scenes']
return "Work not found in the selected dataset."
def get_narrative_content_with_index(dataset, data_type, work):
data = read_data(dataset, data_type)
for idx, entry in enumerate(data):
if entry.get("name") == work:
# For MovieSum and MENSA datasets, only return scenes
if dataset in ["MovieSum", "MENSA"]:
return "\n".join(entry['scenes']), idx, data
# For other datasets or custom input, return full content
return entry, idx, data
return "Work not found in the selected dataset.", None, None
def show_diff(original, revised):
d = HtmlDiff()
original_lines = original.splitlines(keepends=True)
revised_lines = revised.splitlines(keepends=True)
diff_table = d.make_table(original_lines, revised_lines, fromdesc='Original Summary', todesc='Refined Summary', context=True, numlines=2)
return diff_table
def extract_initial_summary(summary_result):
return summary_result['summary_agg']['summaries']
def extract_factuality_score_and_details(fact_score_result):
factuality_score = fact_score_result['fact_score']
feedback_list = []
for i, feedback_data in enumerate(fact_score_result['summary_feedback_pairs']):
feedbacks = [fb for fb in feedback_data['feedbacks'] if fb.strip()]
if feedbacks:
feedback_list.append(f"In chunk {i + 1}: {'; '.join(feedbacks)}")
incorrect_details = "\n".join(feedback_list)
return factuality_score, incorrect_details
def build_kg(script, idx, api_key, model_id):
kg = script2kg(script['scenes'], idx, script['name'], api_key, model_id)
return kg
def build_kg_custom(scenes, idx, api_key, model_id):
kg = script2kg(scenes, idx, "custom", api_key, model_id)
return kg
def build_kg_with_data(data, work_index, custom_scenes, api_key, model_id):
if data and work_index is not None: # Dataset mode
script = data[int(work_index)]
try:
kg = script2kg(script['scenes'], int(work_index), script['name'], api_key, model_id)
return kg, "Knowledge Graph built successfully!"
except Exception as e:
return None, f"Error building knowledge graph: {str(e)}"
elif custom_scenes: # Custom script mode
try:
scenes = parse_scenes(custom_scenes)
if not isinstance(scenes, list):
return None, "Invalid format. Please provide scenes as a list."
kg = build_kg_custom(scenes, 0, api_key, model_id)
return kg, "Knowledge Graph built successfully!"
except (json.JSONDecodeError, SyntaxError, ValueError) as e:
return None, f"Invalid format. Error: {str(e)}"
except Exception as e:
return None, f"Error building knowledge graph: {str(e)}"
return None, "Please select a work or input custom scenes."
def generate_summary(script, idx, api_key, model_id):
_set_seed(42)
scripty_summarizer = Summarizer(
inference_mode="org",
model_id=model_id,
api_key=api_key,
dtype="float16",
seed=42
)
scenes = [f"s#{i}\n{s}" for i, s in enumerate(script['scenes'])]
script = "\n\n".join(scenes)
script_chunks = chunk_script_gpt(script=script, model_id=model_id, chunk_size=2048)
script_summaries = []
for chunk in tqdm(script_chunks):
chunk = preprocess_script(chunk)
prompt = build_summarizer_prompt(
prompt_template="./templates/external_summary.txt",
input_text_list=[chunk]
)
script_summ = scripty_summarizer.inference_with_gpt(prompt=prompt)
script_summaries.append(script_summ.strip())
elem_dict_list = []
agg_dict = {
'script': ' '.join(script_chunks),
'summaries': ' '.join(script_summaries)
}
for i, (chunk, summary) in enumerate(zip(script_chunks, script_summaries)):
elem_dict = {
"chunk_index": i,
"chunk": chunk.strip(),
"summary": summary.strip()
}
elem_dict_list.append(elem_dict)
processed_dataset = {
"script": script,
"scenes": scenes,
"script_chunks": script_chunks,
"script_summaries": script_summaries,
}
return {"summary_sep": elem_dict_list, "summary_agg": agg_dict, "processed_dataset": processed_dataset}
def generate_summary_with_data(data, work_index, custom_scenes, api_key, model_id):
if data and work_index is not None: # Dataset mode
script = data[int(work_index)]
try:
summary = generate_summary(script, int(work_index), api_key, model_id)
return summary, extract_initial_summary(summary)
except Exception as e:
return None, f"Error generating summary: {str(e)}"
elif custom_scenes: # Custom script mode
try:
scenes = parse_scenes(custom_scenes)
if not isinstance(scenes, list):
return None, "Invalid format. Please provide scenes as a list."
script = {"name": "custom", "scenes": scenes}
summary = generate_summary(script, 0, api_key, model_id)
return summary, extract_initial_summary(summary)
except (json.JSONDecodeError, SyntaxError, ValueError) as e:
return None, f"Invalid format. Error: {str(e)}"
except Exception as e:
return None, f"Error generating summary: {str(e)}"
return None, "Please select a work or input custom scenes."
def calculate_narrative_fact_score(summary, kg_raw, api_key, model_id):
_set_seed(42)
factscorer = NarrativeFactScore(split_type='gpt', model='gptscore', api_key=api_key, model_id=model_id)
summary = summary['processed_dataset']
chunks, summaries = summary['script_chunks'], summary['script_summaries']
total_output = {'fact_score': 0, 'summary_feedback_pairs': []}
partial_output = {'fact_score': 0, 'summary_feedback_pairs': []}
total_score = 0
kg = []
for elem in kg_raw:
if elem['subject'] == elem['object']:
kg.append(f"{elem['subject']} {elem['predicate']}")
else:
kg.append(f"{elem['subject']} {elem['predicate']} {elem['object']}")
scores, scores_per_sent, relevant_scenes, summary_chunks, feedbacks = factscorer.score_src_hyp_long(chunks, summaries, kg)
for i, score in enumerate(scores):
output_elem = {
'src': chunks[i],
'summary': summaries[i],
'score': score,
'scores_per_sent': scores_per_sent[i],
'relevant_scenes': relevant_scenes[i],
'summary_chunks': summary_chunks[i],
'feedbacks': feedbacks[i],
}
output_elem_part = {
'scores_per_sent': scores_per_sent[i],
'summary_chunks': summary_chunks[i],
'feedbacks': feedbacks[i],
}
total_output['summary_feedback_pairs'].append(output_elem)
partial_output['summary_feedback_pairs'].append(output_elem_part)
total_score += score
total_output['fact_score'] = float(total_score / len(scores))
partial_output['fact_score'] = float(total_score / len(scores))
return total_output, partial_output
def refine_summary(summary, fact_score, api_key, model_id):
_set_seed(42)
threshold = 0.9
summarizer = Summarizer(
inference_mode="org",
model_id=model_id,
api_key=api_key,
dtype="float16",
seed=42
)
processed_dataset = {
"script": summary["script"],
"scenes": summary["scenes"],
"script_chunks": [],
"script_summaries": []
}
elem_dict_list = []
agg_dict = {}
for factscore_chunk in tqdm(fact_score['summary_feedback_pairs']):
src_chunk = factscore_chunk['src']
original_summary = factscore_chunk['summary']
if factscore_chunk['score'] >= threshold:
processed_dataset["script_chunks"].append(src_chunk)
processed_dataset["script_summaries"].append(original_summary.strip())
continue
hallu_idxs = np.where(np.array(factscore_chunk['scores_per_sent']) == 0)[0]
hallu_summary_parts = np.array(factscore_chunk['summary_chunks'])[hallu_idxs]
feedbacks = np.array(factscore_chunk['feedbacks'])[hallu_idxs]
prompt = build_summarizer_prompt(
prompt_template="./templates/self_correction.txt",
input_text_list=[src_chunk, original_summary]
)
for j, (hallu_summ, feedback) in enumerate(zip(hallu_summary_parts, feedbacks)):
prompt += f"\n- Statement to Revise {j + 1}: {hallu_summ} (Reason for Revision: {feedback})"
prompt += "\n- Revised Summary: "
revised_summary = summarizer.inference_with_gpt(prompt=prompt)
if len(revised_summary.strip()) == 0:
revised_summary = original_summary
processed_dataset["script_chunks"].append(src_chunk)
processed_dataset["script_summaries"].append(revised_summary)
elem_dict = {
"chunk_index": len(processed_dataset["script_chunks"]) - 1,
"chunk": src_chunk.strip(),
"summary": revised_summary.strip(),
"org_summary": original_summary.strip(),
"hallu_in_summary": list(hallu_summary_parts),
"feedbacks": list(feedbacks),
}
elem_dict_list.append(elem_dict)
agg_dict['script'] = summary['script']
agg_dict['summaries'] = ' '.join(processed_dataset["script_summaries"])
return {
"summary_sep": elem_dict_list,
"summary_agg": agg_dict,
"processed_dataset": processed_dataset
}
def refine_summary_and_return_diff(summary, fact_score, api_key, model_id):
refined_summary = refine_summary(summary['processed_dataset'], fact_score, api_key, model_id)
diff = HtmlDiff().make_file(
summary['summary_agg']['summaries'].splitlines(),
refined_summary['summary_agg']['summaries'].splitlines(),
context=True
)
return diff
def open_kg(kg_data):
if kg_data is None:
return "Please build the knowledge graph first."
try:
with open('refined_kg.html', 'r', encoding='utf-8') as f:
html_content = f.read()
return f'''
<iframe
srcdoc="{html_content.replace('"', '"')}"
style="width: 100%; height: 500px; border: none;"
></iframe>
'''
except Exception as e:
return f'<div style="color: red;">Error reading KG file: {str(e)}</div>'
def format_fact_score_output(fact_score_result):
if not fact_score_result:
return "No factuality analysis available"
formatted_output = []
# Overall score
formatted_output.append(f"Overall Factuality Score: {fact_score_result['fact_score']*100:.1f}%\n")
# Individual chunk analysis
for i, chunk in enumerate(fact_score_result['summary_feedback_pairs'], 1):
formatted_output.append(f"\nChunk {i} Analysis:")
formatted_output.append("Original Text:")
formatted_output.append(f"{' '.join(chunk['summary_chunks'])}\n")
if chunk['feedbacks']:
formatted_output.append("Feedback:")
feedbacks = [f"• {feedback}" for feedback in chunk['feedbacks'] if feedback.strip()]
formatted_output.extend(feedbacks)
formatted_output.append("-" * 80)
return "\n".join(formatted_output)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# NarrativeFactScore: Script Factuality Evaluation
Evaluate and refine script summaries using narrative factuality scoring.
"""
)
with gr.Accordion("Model Settings", open=True):
with gr.Row():
api_key_input = gr.Textbox(
label="GPT API Key",
placeholder="Enter your GPT API key",
type="password",
scale=2
)
model_selector = gr.Dropdown(
choices=[
"gpt-4o-mini",
"gpt-4o",
"gpt-4-turbo",
"gpt-3.5-turbo-0125"
],
value="gpt-4o",
label="Model Selection",
scale=1
)
with gr.Tabs():
with gr.TabItem("Dataset Selection"):
with gr.Row():
dataset_selector = gr.Radio(
choices=["MovieSum", "MENSA", "Custom"],
label="Dataset",
info="Choose the dataset or input custom script"
)
data_type_selector = gr.Radio(
choices=["train", "validation", "test"],
label="Split Type",
info="Select data split",
visible=True
)
name_list = gr.Dropdown(
choices=[],
label="Select Script",
info="Choose a script to analyze",
visible=True
)
custom_input = gr.Textbox(
label="Custom Script Input",
info="Enter scenes as a JSON list: ['scene1', 'scene2', ...]",
lines=10,
visible=False
)
narrative_output = gr.Textbox(
label="Script Content",
interactive=False,
lines=10
)
with gr.TabItem("Knowledge Graph"):
with gr.Row():
generate_kg_button = gr.Button(
"Generate Knowledge Graph",
variant="primary"
)
open_kg_button = gr.Button("View Graph")
kg_status = gr.Textbox(
label="Status",
interactive=False
)
kg_viewer = gr.HTML(label="Knowledge Graph Visualization")
with gr.TabItem("Summary Generation"):
generate_summary_button = gr.Button(
"Generate Initial Summary",
variant="primary"
)
summary_output = gr.Textbox(
label="Generated Summary",
interactive=False,
lines=5
)
calculate_score_button = gr.Button("Calculate Factuality Score")
fact_score_display = gr.Textbox(
label="Factuality Analysis",
interactive=False,
lines=10
)
with gr.TabItem("Summary Refinement"):
refine_button = gr.Button(
"Refine Summary",
variant="primary"
)
refined_output = gr.HTML(label="Refined Summary with Changes")
# Hidden states
work_index = gr.State()
data_state = gr.State()
kg_output = gr.State()
summary_state = gr.State()
fact_score_state = gr.State()
# Event handlers
dataset_selector.change(
fn=lambda x: gr.update(visible=x in ["MovieSum", "MENSA"]),
inputs=[dataset_selector],
outputs=data_type_selector
)
dataset_selector.change(
fn=update_name_list_interface,
inputs=[dataset_selector, data_type_selector],
outputs=[name_list, custom_input, narrative_output]
)
name_list.change(
fn=get_narrative_content_with_index,
inputs=[dataset_selector, data_type_selector, name_list],
outputs=[narrative_output, work_index, data_state]
)
generate_kg_button.click(
fn=build_kg_with_data,
inputs=[
data_state, # data
work_index, # work_index
custom_input, # custom_scenes
api_key_input, # api_key
model_selector # model_id
],
outputs=[kg_output, kg_status]
)
open_kg_button.click(
fn=open_kg,
inputs=[kg_output],
outputs=kg_viewer
)
generate_summary_button.click(
fn=generate_summary_with_data,
inputs=[data_state, work_index, custom_input, api_key_input, model_selector],
outputs=[summary_state, summary_output]
)
calculate_score_button.click(
fn=lambda summary, kg, api_key, model: (
*calculate_narrative_fact_score(summary, kg, api_key, model),
format_fact_score_output(calculate_narrative_fact_score(summary, kg, api_key, model)[0])
),
inputs=[summary_state, kg_output, api_key_input, model_selector],
outputs=[fact_score_state, fact_score_display]
)
refine_button.click(
fn=refine_summary_and_return_diff,
inputs=[summary_state, fact_score_state, api_key_input, model_selector],
outputs=refined_output
)
if __name__ == "__main__":
demo.launch() |