Unstack models by date
Browse files- a.ipynb +0 -168
- app.py +7 -4
- debug.ipynb +413 -0
a.ipynb
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import json\n",
|
| 10 |
-
"from pathlib import Path\n",
|
| 11 |
-
"\n",
|
| 12 |
-
"import gradio as gr\n",
|
| 13 |
-
"import pandas as pd"
|
| 14 |
-
]
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"cell_type": "code",
|
| 18 |
-
"execution_count": 31,
|
| 19 |
-
"metadata": {},
|
| 20 |
-
"outputs": [],
|
| 21 |
-
"source": [
|
| 22 |
-
"def get_leaderboard_df():\n",
|
| 23 |
-
" filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
|
| 24 |
-
"\n",
|
| 25 |
-
" # Parse filepaths to get unique models\n",
|
| 26 |
-
" models = set()\n",
|
| 27 |
-
" for filepath in filepaths:\n",
|
| 28 |
-
" path_parts = Path(filepath).parts\n",
|
| 29 |
-
" model_revision = \"_\".join(path_parts[1:4])\n",
|
| 30 |
-
" models.add(model_revision)\n",
|
| 31 |
-
"\n",
|
| 32 |
-
" # Initialize DataFrame\n",
|
| 33 |
-
" df = pd.DataFrame(index=list(models))\n",
|
| 34 |
-
"\n",
|
| 35 |
-
" # Extract data from each file and populate the DataFrame\n",
|
| 36 |
-
" for filepath in filepaths:\n",
|
| 37 |
-
" path_parts = Path(filepath).parts\n",
|
| 38 |
-
" model_revision = \"_\".join(path_parts[1:4])\n",
|
| 39 |
-
" task = path_parts[4].capitalize()\n",
|
| 40 |
-
" # Extract timestamp from filepath\n",
|
| 41 |
-
" timestamp = filepath.stem.split(\"_\")[-1][:-3]\n",
|
| 42 |
-
" df.loc[model_revision, \"Timestamp\"] = timestamp\n",
|
| 43 |
-
"\n",
|
| 44 |
-
" with open(filepath, \"r\") as file:\n",
|
| 45 |
-
" data = json.load(file)\n",
|
| 46 |
-
" first_result_key = next(iter(data[\"results\"])) # gets the first key in 'results'\n",
|
| 47 |
-
" # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
|
| 48 |
-
" if task == \"truthfulqa\":\n",
|
| 49 |
-
" value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
|
| 50 |
-
" else:\n",
|
| 51 |
-
" first_metric_key = next(iter(data[\"results\"][first_result_key])) # gets the first key in the first result\n",
|
| 52 |
-
" value = data[\"results\"][first_result_key][first_metric_key] # gets the value of the first metric\n",
|
| 53 |
-
" df.loc[model_revision, task] = value\n",
|
| 54 |
-
" \n",
|
| 55 |
-
" df.insert(loc=0, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
|
| 56 |
-
" df = df.sort_values(by=[\"Average\"], ascending=False)\n",
|
| 57 |
-
" df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
|
| 58 |
-
" return df"
|
| 59 |
-
]
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"cell_type": "code",
|
| 63 |
-
"execution_count": 32,
|
| 64 |
-
"metadata": {},
|
| 65 |
-
"outputs": [],
|
| 66 |
-
"source": [
|
| 67 |
-
"df = get_leaderboard_df()"
|
| 68 |
-
]
|
| 69 |
-
},
|
| 70 |
-
{
|
| 71 |
-
"cell_type": "code",
|
| 72 |
-
"execution_count": null,
|
| 73 |
-
"metadata": {},
|
| 74 |
-
"outputs": [
|
| 75 |
-
{
|
| 76 |
-
"data": {
|
| 77 |
-
"text/html": [
|
| 78 |
-
"<div>\n",
|
| 79 |
-
"<style scoped>\n",
|
| 80 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 81 |
-
" vertical-align: middle;\n",
|
| 82 |
-
" }\n",
|
| 83 |
-
"\n",
|
| 84 |
-
" .dataframe tbody tr th {\n",
|
| 85 |
-
" vertical-align: top;\n",
|
| 86 |
-
" }\n",
|
| 87 |
-
"\n",
|
| 88 |
-
" .dataframe thead th {\n",
|
| 89 |
-
" text-align: right;\n",
|
| 90 |
-
" }\n",
|
| 91 |
-
"</style>\n",
|
| 92 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 93 |
-
" <thead>\n",
|
| 94 |
-
" <tr style=\"text-align: right;\">\n",
|
| 95 |
-
" <th></th>\n",
|
| 96 |
-
" <th>Model</th>\n",
|
| 97 |
-
" <th>Timestamp</th>\n",
|
| 98 |
-
" <th>Average</th>\n",
|
| 99 |
-
" <th>Truthfulqa</th>\n",
|
| 100 |
-
" <th>Winogrande</th>\n",
|
| 101 |
-
" <th>Gsm8k</th>\n",
|
| 102 |
-
" <th>Hellaswag</th>\n",
|
| 103 |
-
" <th>Arc</th>\n",
|
| 104 |
-
" </tr>\n",
|
| 105 |
-
" </thead>\n",
|
| 106 |
-
" <tbody>\n",
|
| 107 |
-
" <tr>\n",
|
| 108 |
-
" <th>0</th>\n",
|
| 109 |
-
" <td>Qwen_Qwen1.5-0.5B-Chat_main</td>\n",
|
| 110 |
-
" <td>2024-02-28T07-35-58.803</td>\n",
|
| 111 |
-
" <td>0.296</td>\n",
|
| 112 |
-
" <td>0.271</td>\n",
|
| 113 |
-
" <td>0.519</td>\n",
|
| 114 |
-
" <td>0.039</td>\n",
|
| 115 |
-
" <td>0.363</td>\n",
|
| 116 |
-
" <td>0.287</td>\n",
|
| 117 |
-
" </tr>\n",
|
| 118 |
-
" </tbody>\n",
|
| 119 |
-
"</table>\n",
|
| 120 |
-
"</div>"
|
| 121 |
-
],
|
| 122 |
-
"text/plain": [
|
| 123 |
-
" Model Timestamp Average Truthfulqa \\\n",
|
| 124 |
-
"0 Qwen_Qwen1.5-0.5B-Chat_main 2024-02-28T07-35-58.803 0.296 0.271 \n",
|
| 125 |
-
"\n",
|
| 126 |
-
" Winogrande Gsm8k Hellaswag Arc \n",
|
| 127 |
-
"0 0.519 0.039 0.363 0.287 "
|
| 128 |
-
]
|
| 129 |
-
},
|
| 130 |
-
"execution_count": 28,
|
| 131 |
-
"metadata": {},
|
| 132 |
-
"output_type": "execute_result"
|
| 133 |
-
}
|
| 134 |
-
],
|
| 135 |
-
"source": [
|
| 136 |
-
"df"
|
| 137 |
-
]
|
| 138 |
-
},
|
| 139 |
-
{
|
| 140 |
-
"cell_type": "code",
|
| 141 |
-
"execution_count": null,
|
| 142 |
-
"metadata": {},
|
| 143 |
-
"outputs": [],
|
| 144 |
-
"source": []
|
| 145 |
-
}
|
| 146 |
-
],
|
| 147 |
-
"metadata": {
|
| 148 |
-
"kernelspec": {
|
| 149 |
-
"display_name": "hf",
|
| 150 |
-
"language": "python",
|
| 151 |
-
"name": "python3"
|
| 152 |
-
},
|
| 153 |
-
"language_info": {
|
| 154 |
-
"codemirror_mode": {
|
| 155 |
-
"name": "ipython",
|
| 156 |
-
"version": 3
|
| 157 |
-
},
|
| 158 |
-
"file_extension": ".py",
|
| 159 |
-
"mimetype": "text/x-python",
|
| 160 |
-
"name": "python",
|
| 161 |
-
"nbconvert_exporter": "python",
|
| 162 |
-
"pygments_lexer": "ipython3",
|
| 163 |
-
"version": "3.10.6"
|
| 164 |
-
}
|
| 165 |
-
},
|
| 166 |
-
"nbformat": 4,
|
| 167 |
-
"nbformat_minor": 2
|
| 168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -27,11 +27,10 @@ def get_leaderboard_df():
|
|
| 27 |
# Extract data from each file and populate the DataFrame
|
| 28 |
for filepath in filepaths:
|
| 29 |
path_parts = Path(filepath).parts
|
| 30 |
-
|
|
|
|
| 31 |
task = path_parts[4].capitalize()
|
| 32 |
-
|
| 33 |
-
timestamp = filepath.stem.split("_")[-1][:-3]
|
| 34 |
-
df.loc[model_revision, "Timestamp"] = timestamp
|
| 35 |
|
| 36 |
with open(filepath, "r") as file:
|
| 37 |
data = json.load(file)
|
|
@@ -58,11 +57,15 @@ def get_leaderboard_df():
|
|
| 58 |
# Put IFEval in first column
|
| 59 |
ifeval_col = df.pop("Ifeval")
|
| 60 |
df.insert(1, "Ifeval", ifeval_col)
|
|
|
|
|
|
|
| 61 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
| 62 |
# Convert all values to percentage
|
| 63 |
df[df.select_dtypes(include=["number"]).columns] *= 100.0
|
| 64 |
df = df.sort_values(by=["Average"], ascending=False)
|
| 65 |
df = df.reset_index().rename(columns={"index": "Model"}).round(2)
|
|
|
|
|
|
|
| 66 |
return df
|
| 67 |
|
| 68 |
|
|
|
|
| 27 |
# Extract data from each file and populate the DataFrame
|
| 28 |
for filepath in filepaths:
|
| 29 |
path_parts = Path(filepath).parts
|
| 30 |
+
date = filepath.stem.split("_")[-1][:-3].split("T")[0]
|
| 31 |
+
model_revision = "_".join(path_parts[1:4]) + "_" + date
|
| 32 |
task = path_parts[4].capitalize()
|
| 33 |
+
df.loc[model_revision, "Date"] = date
|
|
|
|
|
|
|
| 34 |
|
| 35 |
with open(filepath, "r") as file:
|
| 36 |
data = json.load(file)
|
|
|
|
| 57 |
# Put IFEval in first column
|
| 58 |
ifeval_col = df.pop("Ifeval")
|
| 59 |
df.insert(1, "Ifeval", ifeval_col)
|
| 60 |
+
# Drop rows where every entry is NaN
|
| 61 |
+
df = df.dropna(how="all", axis=0, subset=[c for c in df.columns if c != "Date"])
|
| 62 |
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
| 63 |
# Convert all values to percentage
|
| 64 |
df[df.select_dtypes(include=["number"]).columns] *= 100.0
|
| 65 |
df = df.sort_values(by=["Average"], ascending=False)
|
| 66 |
df = df.reset_index().rename(columns={"index": "Model"}).round(2)
|
| 67 |
+
# Strip off date from model name
|
| 68 |
+
df["Model"] = df["Model"].apply(lambda x: x.rsplit("_", 1)[0])
|
| 69 |
return df
|
| 70 |
|
| 71 |
|
debug.ipynb
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import json\n",
|
| 10 |
+
"from pathlib import Path\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"import gradio as gr\n",
|
| 13 |
+
"import pandas as pd"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 51,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"def get_leaderboard_df():\n",
|
| 23 |
+
" filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
|
| 24 |
+
"\n",
|
| 25 |
+
" # Parse filepaths to get unique models\n",
|
| 26 |
+
" models = set()\n",
|
| 27 |
+
" for filepath in filepaths:\n",
|
| 28 |
+
" path_parts = Path(filepath).parts\n",
|
| 29 |
+
" model_revision = \"_\".join(path_parts[1:4])\n",
|
| 30 |
+
" models.add(model_revision)\n",
|
| 31 |
+
"\n",
|
| 32 |
+
" # Initialize DataFrame\n",
|
| 33 |
+
" df = pd.DataFrame(index=list(models))\n",
|
| 34 |
+
"\n",
|
| 35 |
+
" # Extract data from each file and populate the DataFrame\n",
|
| 36 |
+
" for filepath in filepaths:\n",
|
| 37 |
+
" path_parts = Path(filepath).parts\n",
|
| 38 |
+
" date = filepath.stem.split(\"_\")[-1][:-3].split(\"T\")[0]\n",
|
| 39 |
+
" model_revision = \"_\".join(path_parts[1:4]) + \"_\" + date\n",
|
| 40 |
+
" task = path_parts[4].capitalize()\n",
|
| 41 |
+
" df.loc[model_revision, \"Date\"] = date\n",
|
| 42 |
+
"\n",
|
| 43 |
+
" with open(filepath, \"r\") as file:\n",
|
| 44 |
+
" data = json.load(file)\n",
|
| 45 |
+
" first_result_key = next(iter(data[\"results\"])) # gets the first key in 'results'\n",
|
| 46 |
+
" # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
|
| 47 |
+
" if task == \"truthfulqa\":\n",
|
| 48 |
+
" value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
|
| 49 |
+
" else:\n",
|
| 50 |
+
" first_metric_key = next(iter(data[\"results\"][first_result_key])) # gets the first key in the first result\n",
|
| 51 |
+
" value = data[\"results\"][first_result_key][first_metric_key] # gets the value of the first metric\n",
|
| 52 |
+
" df.loc[model_revision, task] = value\n",
|
| 53 |
+
" \n",
|
| 54 |
+
" # Drop rows where every entry is NaN\n",
|
| 55 |
+
" df = df.dropna(how=\"all\", axis=0, subset=[c for c in df.columns if c != \"Date\"])\n",
|
| 56 |
+
" df.insert(loc=1, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
|
| 57 |
+
" df = df.sort_values(by=[\"Average\"], ascending=False)\n",
|
| 58 |
+
" df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
|
| 59 |
+
" # Strip off date from model name\n",
|
| 60 |
+
" df[\"Model\"] = df[\"Model\"].apply(lambda x: x.rsplit(\"_\", 1)[0])\n",
|
| 61 |
+
" return df"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 52,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"df = get_leaderboard_df()"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 53,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [
|
| 78 |
+
{
|
| 79 |
+
"data": {
|
| 80 |
+
"text/html": [
|
| 81 |
+
"<div>\n",
|
| 82 |
+
"<style scoped>\n",
|
| 83 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 84 |
+
" vertical-align: middle;\n",
|
| 85 |
+
" }\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" .dataframe tbody tr th {\n",
|
| 88 |
+
" vertical-align: top;\n",
|
| 89 |
+
" }\n",
|
| 90 |
+
"\n",
|
| 91 |
+
" .dataframe thead th {\n",
|
| 92 |
+
" text-align: right;\n",
|
| 93 |
+
" }\n",
|
| 94 |
+
"</style>\n",
|
| 95 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 96 |
+
" <thead>\n",
|
| 97 |
+
" <tr style=\"text-align: right;\">\n",
|
| 98 |
+
" <th></th>\n",
|
| 99 |
+
" <th>Model</th>\n",
|
| 100 |
+
" <th>Date</th>\n",
|
| 101 |
+
" <th>Average</th>\n",
|
| 102 |
+
" <th>Ifeval</th>\n",
|
| 103 |
+
" <th>Truthfulqa</th>\n",
|
| 104 |
+
" <th>Winogrande</th>\n",
|
| 105 |
+
" <th>Gsm8k</th>\n",
|
| 106 |
+
" <th>Mmlu</th>\n",
|
| 107 |
+
" <th>Hellaswag</th>\n",
|
| 108 |
+
" <th>Arc</th>\n",
|
| 109 |
+
" </tr>\n",
|
| 110 |
+
" </thead>\n",
|
| 111 |
+
" <tbody>\n",
|
| 112 |
+
" <tr>\n",
|
| 113 |
+
" <th>0</th>\n",
|
| 114 |
+
" <td>NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main</td>\n",
|
| 115 |
+
" <td>2024-03-02</td>\n",
|
| 116 |
+
" <td>0.617</td>\n",
|
| 117 |
+
" <td>0.553</td>\n",
|
| 118 |
+
" <td>0.477</td>\n",
|
| 119 |
+
" <td>0.785</td>\n",
|
| 120 |
+
" <td>0.622</td>\n",
|
| 121 |
+
" <td>0.51</td>\n",
|
| 122 |
+
" <td>0.677</td>\n",
|
| 123 |
+
" <td>0.698</td>\n",
|
| 124 |
+
" </tr>\n",
|
| 125 |
+
" <tr>\n",
|
| 126 |
+
" <th>1</th>\n",
|
| 127 |
+
" <td>NousResearch_Nous-Hermes-2-Yi-34B_main</td>\n",
|
| 128 |
+
" <td>2024-03-04</td>\n",
|
| 129 |
+
" <td>0.604</td>\n",
|
| 130 |
+
" <td>NaN</td>\n",
|
| 131 |
+
" <td>0.439</td>\n",
|
| 132 |
+
" <td>0.806</td>\n",
|
| 133 |
+
" <td>NaN</td>\n",
|
| 134 |
+
" <td>0.48</td>\n",
|
| 135 |
+
" <td>0.640</td>\n",
|
| 136 |
+
" <td>0.654</td>\n",
|
| 137 |
+
" </tr>\n",
|
| 138 |
+
" <tr>\n",
|
| 139 |
+
" <th>2</th>\n",
|
| 140 |
+
" <td>mistralai_Mixtral-8x7B-Instruct-v0.1_main</td>\n",
|
| 141 |
+
" <td>2024-03-02</td>\n",
|
| 142 |
+
" <td>0.603</td>\n",
|
| 143 |
+
" <td>0.497</td>\n",
|
| 144 |
+
" <td>0.554</td>\n",
|
| 145 |
+
" <td>0.736</td>\n",
|
| 146 |
+
" <td>0.599</td>\n",
|
| 147 |
+
" <td>0.43</td>\n",
|
| 148 |
+
" <td>0.709</td>\n",
|
| 149 |
+
" <td>0.698</td>\n",
|
| 150 |
+
" </tr>\n",
|
| 151 |
+
" <tr>\n",
|
| 152 |
+
" <th>3</th>\n",
|
| 153 |
+
" <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
|
| 154 |
+
" <td>2024-03-04</td>\n",
|
| 155 |
+
" <td>0.603</td>\n",
|
| 156 |
+
" <td>NaN</td>\n",
|
| 157 |
+
" <td>0.395</td>\n",
|
| 158 |
+
" <td>0.792</td>\n",
|
| 159 |
+
" <td>NaN</td>\n",
|
| 160 |
+
" <td>NaN</td>\n",
|
| 161 |
+
" <td>NaN</td>\n",
|
| 162 |
+
" <td>0.622</td>\n",
|
| 163 |
+
" </tr>\n",
|
| 164 |
+
" <tr>\n",
|
| 165 |
+
" <th>4</th>\n",
|
| 166 |
+
" <td>deepseek-ai_deepseek-llm-67b-chat_main</td>\n",
|
| 167 |
+
" <td>2024-03-05</td>\n",
|
| 168 |
+
" <td>0.585</td>\n",
|
| 169 |
+
" <td>0.505</td>\n",
|
| 170 |
+
" <td>NaN</td>\n",
|
| 171 |
+
" <td>NaN</td>\n",
|
| 172 |
+
" <td>0.761</td>\n",
|
| 173 |
+
" <td>0.42</td>\n",
|
| 174 |
+
" <td>0.654</td>\n",
|
| 175 |
+
" <td>NaN</td>\n",
|
| 176 |
+
" </tr>\n",
|
| 177 |
+
" <tr>\n",
|
| 178 |
+
" <th>...</th>\n",
|
| 179 |
+
" <td>...</td>\n",
|
| 180 |
+
" <td>...</td>\n",
|
| 181 |
+
" <td>...</td>\n",
|
| 182 |
+
" <td>...</td>\n",
|
| 183 |
+
" <td>...</td>\n",
|
| 184 |
+
" <td>...</td>\n",
|
| 185 |
+
" <td>...</td>\n",
|
| 186 |
+
" <td>...</td>\n",
|
| 187 |
+
" <td>...</td>\n",
|
| 188 |
+
" <td>...</td>\n",
|
| 189 |
+
" </tr>\n",
|
| 190 |
+
" <tr>\n",
|
| 191 |
+
" <th>269</th>\n",
|
| 192 |
+
" <td>HuggingFaceH4_starcoder2-15b-ift_v18.0</td>\n",
|
| 193 |
+
" <td>2024-03-10</td>\n",
|
| 194 |
+
" <td>0.089</td>\n",
|
| 195 |
+
" <td>0.170</td>\n",
|
| 196 |
+
" <td>NaN</td>\n",
|
| 197 |
+
" <td>NaN</td>\n",
|
| 198 |
+
" <td>0.008</td>\n",
|
| 199 |
+
" <td>NaN</td>\n",
|
| 200 |
+
" <td>NaN</td>\n",
|
| 201 |
+
" <td>NaN</td>\n",
|
| 202 |
+
" </tr>\n",
|
| 203 |
+
" <tr>\n",
|
| 204 |
+
" <th>270</th>\n",
|
| 205 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v49.0</td>\n",
|
| 206 |
+
" <td>2024-03-07</td>\n",
|
| 207 |
+
" <td>0.086</td>\n",
|
| 208 |
+
" <td>0.172</td>\n",
|
| 209 |
+
" <td>NaN</td>\n",
|
| 210 |
+
" <td>NaN</td>\n",
|
| 211 |
+
" <td>0.000</td>\n",
|
| 212 |
+
" <td>NaN</td>\n",
|
| 213 |
+
" <td>NaN</td>\n",
|
| 214 |
+
" <td>NaN</td>\n",
|
| 215 |
+
" </tr>\n",
|
| 216 |
+
" <tr>\n",
|
| 217 |
+
" <th>271</th>\n",
|
| 218 |
+
" <td>HuggingFaceH4_starchat-beta_main</td>\n",
|
| 219 |
+
" <td>2024-03-12</td>\n",
|
| 220 |
+
" <td>0.079</td>\n",
|
| 221 |
+
" <td>0.079</td>\n",
|
| 222 |
+
" <td>NaN</td>\n",
|
| 223 |
+
" <td>NaN</td>\n",
|
| 224 |
+
" <td>NaN</td>\n",
|
| 225 |
+
" <td>NaN</td>\n",
|
| 226 |
+
" <td>NaN</td>\n",
|
| 227 |
+
" <td>NaN</td>\n",
|
| 228 |
+
" </tr>\n",
|
| 229 |
+
" <tr>\n",
|
| 230 |
+
" <th>272</th>\n",
|
| 231 |
+
" <td>HuggingFaceH4_starcoder2-15b-ift_v7.0</td>\n",
|
| 232 |
+
" <td>2024-03-10</td>\n",
|
| 233 |
+
" <td>0.070</td>\n",
|
| 234 |
+
" <td>0.107</td>\n",
|
| 235 |
+
" <td>NaN</td>\n",
|
| 236 |
+
" <td>NaN</td>\n",
|
| 237 |
+
" <td>0.032</td>\n",
|
| 238 |
+
" <td>NaN</td>\n",
|
| 239 |
+
" <td>NaN</td>\n",
|
| 240 |
+
" <td>NaN</td>\n",
|
| 241 |
+
" </tr>\n",
|
| 242 |
+
" <tr>\n",
|
| 243 |
+
" <th>273</th>\n",
|
| 244 |
+
" <td>HuggingFaceH4_zephyr-7b-beta-ift_v1.1</td>\n",
|
| 245 |
+
" <td>2024-03-13</td>\n",
|
| 246 |
+
" <td>0.043</td>\n",
|
| 247 |
+
" <td>0.087</td>\n",
|
| 248 |
+
" <td>NaN</td>\n",
|
| 249 |
+
" <td>NaN</td>\n",
|
| 250 |
+
" <td>0.000</td>\n",
|
| 251 |
+
" <td>NaN</td>\n",
|
| 252 |
+
" <td>NaN</td>\n",
|
| 253 |
+
" <td>NaN</td>\n",
|
| 254 |
+
" </tr>\n",
|
| 255 |
+
" </tbody>\n",
|
| 256 |
+
"</table>\n",
|
| 257 |
+
"<p>274 rows × 10 columns</p>\n",
|
| 258 |
+
"</div>"
|
| 259 |
+
],
|
| 260 |
+
"text/plain": [
|
| 261 |
+
" Model Date Average \\\n",
|
| 262 |
+
"0 NousResearch_Nous-Hermes-2-Mixtral-8x7B-DPO_main 2024-03-02 0.617 \n",
|
| 263 |
+
"1 NousResearch_Nous-Hermes-2-Yi-34B_main 2024-03-04 0.604 \n",
|
| 264 |
+
"2 mistralai_Mixtral-8x7B-Instruct-v0.1_main 2024-03-02 0.603 \n",
|
| 265 |
+
"3 deepseek-ai_deepseek-llm-67b-chat_main 2024-03-04 0.603 \n",
|
| 266 |
+
"4 deepseek-ai_deepseek-llm-67b-chat_main 2024-03-05 0.585 \n",
|
| 267 |
+
".. ... ... ... \n",
|
| 268 |
+
"269 HuggingFaceH4_starcoder2-15b-ift_v18.0 2024-03-10 0.089 \n",
|
| 269 |
+
"270 HuggingFaceH4_mistral-7b-ift_v49.0 2024-03-07 0.086 \n",
|
| 270 |
+
"271 HuggingFaceH4_starchat-beta_main 2024-03-12 0.079 \n",
|
| 271 |
+
"272 HuggingFaceH4_starcoder2-15b-ift_v7.0 2024-03-10 0.070 \n",
|
| 272 |
+
"273 HuggingFaceH4_zephyr-7b-beta-ift_v1.1 2024-03-13 0.043 \n",
|
| 273 |
+
"\n",
|
| 274 |
+
" Ifeval Truthfulqa Winogrande Gsm8k Mmlu Hellaswag Arc \n",
|
| 275 |
+
"0 0.553 0.477 0.785 0.622 0.51 0.677 0.698 \n",
|
| 276 |
+
"1 NaN 0.439 0.806 NaN 0.48 0.640 0.654 \n",
|
| 277 |
+
"2 0.497 0.554 0.736 0.599 0.43 0.709 0.698 \n",
|
| 278 |
+
"3 NaN 0.395 0.792 NaN NaN NaN 0.622 \n",
|
| 279 |
+
"4 0.505 NaN NaN 0.761 0.42 0.654 NaN \n",
|
| 280 |
+
".. ... ... ... ... ... ... ... \n",
|
| 281 |
+
"269 0.170 NaN NaN 0.008 NaN NaN NaN \n",
|
| 282 |
+
"270 0.172 NaN NaN 0.000 NaN NaN NaN \n",
|
| 283 |
+
"271 0.079 NaN NaN NaN NaN NaN NaN \n",
|
| 284 |
+
"272 0.107 NaN NaN 0.032 NaN NaN NaN \n",
|
| 285 |
+
"273 0.087 NaN NaN 0.000 NaN NaN NaN \n",
|
| 286 |
+
"\n",
|
| 287 |
+
"[274 rows x 10 columns]"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
"execution_count": 53,
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"output_type": "execute_result"
|
| 293 |
+
}
|
| 294 |
+
],
|
| 295 |
+
"source": [
|
| 296 |
+
"df"
|
| 297 |
+
]
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"execution_count": 32,
|
| 302 |
+
"metadata": {},
|
| 303 |
+
"outputs": [
|
| 304 |
+
{
|
| 305 |
+
"data": {
|
| 306 |
+
"text/html": [
|
| 307 |
+
"<div>\n",
|
| 308 |
+
"<style scoped>\n",
|
| 309 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 310 |
+
" vertical-align: middle;\n",
|
| 311 |
+
" }\n",
|
| 312 |
+
"\n",
|
| 313 |
+
" .dataframe tbody tr th {\n",
|
| 314 |
+
" vertical-align: top;\n",
|
| 315 |
+
" }\n",
|
| 316 |
+
"\n",
|
| 317 |
+
" .dataframe thead th {\n",
|
| 318 |
+
" text-align: right;\n",
|
| 319 |
+
" }\n",
|
| 320 |
+
"</style>\n",
|
| 321 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 322 |
+
" <thead>\n",
|
| 323 |
+
" <tr style=\"text-align: right;\">\n",
|
| 324 |
+
" <th></th>\n",
|
| 325 |
+
" <th>Model</th>\n",
|
| 326 |
+
" <th>Average</th>\n",
|
| 327 |
+
" <th>Ifeval</th>\n",
|
| 328 |
+
" <th>Truthfulqa</th>\n",
|
| 329 |
+
" <th>Winogrande</th>\n",
|
| 330 |
+
" <th>Gsm8k</th>\n",
|
| 331 |
+
" <th>Mmlu</th>\n",
|
| 332 |
+
" <th>Hellaswag</th>\n",
|
| 333 |
+
" <th>Arc</th>\n",
|
| 334 |
+
" </tr>\n",
|
| 335 |
+
" </thead>\n",
|
| 336 |
+
" <tbody>\n",
|
| 337 |
+
" <tr>\n",
|
| 338 |
+
" <th>50</th>\n",
|
| 339 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08</td>\n",
|
| 340 |
+
" <td>0.49</td>\n",
|
| 341 |
+
" <td>0.418</td>\n",
|
| 342 |
+
" <td>0.359</td>\n",
|
| 343 |
+
" <td>0.672</td>\n",
|
| 344 |
+
" <td>0.453</td>\n",
|
| 345 |
+
" <td>0.33</td>\n",
|
| 346 |
+
" <td>0.656</td>\n",
|
| 347 |
+
" <td>0.545</td>\n",
|
| 348 |
+
" </tr>\n",
|
| 349 |
+
" <tr>\n",
|
| 350 |
+
" <th>532</th>\n",
|
| 351 |
+
" <td>HuggingFaceH4_mistral-7b-ift_v48.56</td>\n",
|
| 352 |
+
" <td>NaN</td>\n",
|
| 353 |
+
" <td>NaN</td>\n",
|
| 354 |
+
" <td>NaN</td>\n",
|
| 355 |
+
" <td>NaN</td>\n",
|
| 356 |
+
" <td>NaN</td>\n",
|
| 357 |
+
" <td>NaN</td>\n",
|
| 358 |
+
" <td>NaN</td>\n",
|
| 359 |
+
" <td>NaN</td>\n",
|
| 360 |
+
" </tr>\n",
|
| 361 |
+
" </tbody>\n",
|
| 362 |
+
"</table>\n",
|
| 363 |
+
"</div>"
|
| 364 |
+
],
|
| 365 |
+
"text/plain": [
|
| 366 |
+
" Model Average Ifeval \\\n",
|
| 367 |
+
"50 HuggingFaceH4_mistral-7b-ift_v48.56_2024-03-08 0.49 0.418 \n",
|
| 368 |
+
"532 HuggingFaceH4_mistral-7b-ift_v48.56 NaN NaN \n",
|
| 369 |
+
"\n",
|
| 370 |
+
" Truthfulqa Winogrande Gsm8k Mmlu Hellaswag Arc \n",
|
| 371 |
+
"50 0.359 0.672 0.453 0.33 0.656 0.545 \n",
|
| 372 |
+
"532 NaN NaN NaN NaN NaN NaN "
|
| 373 |
+
]
|
| 374 |
+
},
|
| 375 |
+
"execution_count": 32,
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"output_type": "execute_result"
|
| 378 |
+
}
|
| 379 |
+
],
|
| 380 |
+
"source": [
|
| 381 |
+
"df[df['Model'].str.contains(\"HuggingFaceH4_mistral-7b-ift_v48.56\")]"
|
| 382 |
+
]
|
| 383 |
+
},
|
| 384 |
+
{
|
| 385 |
+
"cell_type": "code",
|
| 386 |
+
"execution_count": null,
|
| 387 |
+
"metadata": {},
|
| 388 |
+
"outputs": [],
|
| 389 |
+
"source": []
|
| 390 |
+
}
|
| 391 |
+
],
|
| 392 |
+
"metadata": {
|
| 393 |
+
"kernelspec": {
|
| 394 |
+
"display_name": "hf",
|
| 395 |
+
"language": "python",
|
| 396 |
+
"name": "python3"
|
| 397 |
+
},
|
| 398 |
+
"language_info": {
|
| 399 |
+
"codemirror_mode": {
|
| 400 |
+
"name": "ipython",
|
| 401 |
+
"version": 3
|
| 402 |
+
},
|
| 403 |
+
"file_extension": ".py",
|
| 404 |
+
"mimetype": "text/x-python",
|
| 405 |
+
"name": "python",
|
| 406 |
+
"nbconvert_exporter": "python",
|
| 407 |
+
"pygments_lexer": "ipython3",
|
| 408 |
+
"version": "3.10.6"
|
| 409 |
+
}
|
| 410 |
+
},
|
| 411 |
+
"nbformat": 4,
|
| 412 |
+
"nbformat_minor": 2
|
| 413 |
+
}
|