Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,9 @@ files = ['reverb_asr_v1.jit.zip', 'tk.units.txt']
|
|
9 |
downloaded_files = [hf_hub_download(repo_id=REPO_ID, filename=f) for f in files]
|
10 |
model = load_model(downloaded_files[0], downloaded_files[1])
|
11 |
|
|
|
|
|
12 |
def process_cat_embs(style):
|
13 |
-
device = torch.device("cuda")
|
14 |
cat_embs = torch.tensor([float(c) for c in style.split(',')]).to(device)
|
15 |
return cat_embs
|
16 |
|
@@ -21,6 +22,7 @@ def transcribe_audio(audio, style=0):
|
|
21 |
return "Input Error! Please enter one audio!"
|
22 |
|
23 |
cat_embs = process_cat_embs(f'{style},{1-style}')
|
|
|
24 |
result = model.transcribe(audio, cat_embs=cat_embs)
|
25 |
|
26 |
if not result or 'text' not in result:
|
@@ -42,7 +44,7 @@ iface = gr.Interface(
|
|
42 |
fn=transcribe_audio,
|
43 |
inputs=[audio_input, style_slider],
|
44 |
outputs=output_textbox,
|
45 |
-
title="Audio Transcription
|
46 |
description=description,
|
47 |
theme="default"
|
48 |
)
|
|
|
9 |
downloaded_files = [hf_hub_download(repo_id=REPO_ID, filename=f) for f in files]
|
10 |
model = load_model(downloaded_files[0], downloaded_files[1])
|
11 |
|
12 |
+
device = torch.device("cuda")
|
13 |
+
|
14 |
def process_cat_embs(style):
|
|
|
15 |
cat_embs = torch.tensor([float(c) for c in style.split(',')]).to(device)
|
16 |
return cat_embs
|
17 |
|
|
|
22 |
return "Input Error! Please enter one audio!"
|
23 |
|
24 |
cat_embs = process_cat_embs(f'{style},{1-style}')
|
25 |
+
model.to(device)
|
26 |
result = model.transcribe(audio, cat_embs=cat_embs)
|
27 |
|
28 |
if not result or 'text' not in result:
|
|
|
44 |
fn=transcribe_audio,
|
45 |
inputs=[audio_input, style_slider],
|
46 |
outputs=output_textbox,
|
47 |
+
title="Audio Transcription",
|
48 |
description=description,
|
49 |
theme="default"
|
50 |
)
|