VibeVoice / processor /vibevoice_tokenizer_processor.py
yasserrmd's picture
Upload folder using huggingface_hub
20a29ac verified
"""
Processor class for VibeVoice models.
"""
import os
import json
import warnings
from typing import List, Optional, Union, Dict, Any
import numpy as np
import torch
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.utils import logging
logger = logging.get_logger(__name__)
class AudioNormalizer:
"""
Audio normalization class for VibeVoice tokenizer.
This class provides audio normalization to ensure consistent input levels
for the VibeVoice tokenizer while maintaining audio quality.
"""
def __init__(self, target_dB_FS: float = -25, eps: float = 1e-6):
"""
Initialize the audio normalizer.
Args:
target_dB_FS (float): Target dB FS level for the audio. Default: -25
eps (float): Small value to avoid division by zero. Default: 1e-6
"""
self.target_dB_FS = target_dB_FS
self.eps = eps
def tailor_dB_FS(self, audio: np.ndarray) -> tuple:
"""
Adjust the audio to the target dB FS level.
Args:
audio (np.ndarray): Input audio signal
Returns:
tuple: (normalized_audio, rms, scalar)
"""
rms = np.sqrt(np.mean(audio**2))
scalar = 10 ** (self.target_dB_FS / 20) / (rms + self.eps)
normalized_audio = audio * scalar
return normalized_audio, rms, scalar
def avoid_clipping(self, audio: np.ndarray, scalar: Optional[float] = None) -> tuple:
"""
Avoid clipping by scaling down if necessary.
Args:
audio (np.ndarray): Input audio signal
scalar (float, optional): Explicit scaling factor
Returns:
tuple: (normalized_audio, scalar)
"""
if scalar is None:
max_val = np.max(np.abs(audio))
if max_val > 1.0:
scalar = max_val + self.eps
else:
scalar = 1.0
return audio / scalar, scalar
def __call__(self, audio: np.ndarray) -> np.ndarray:
"""
Normalize the audio by adjusting to target dB FS and avoiding clipping.
Args:
audio (np.ndarray): Input audio signal
Returns:
np.ndarray: Normalized audio signal
"""
# First adjust to target dB FS
audio, _, _ = self.tailor_dB_FS(audio)
# Then avoid clipping
audio, _ = self.avoid_clipping(audio)
return audio
# Change from ProcessorMixin to FeatureExtractionMixin which is designed for single components
class VibeVoiceTokenizerProcessor(FeatureExtractionMixin):
"""
Processor for VibeVoice acoustic tokenizer models.
This processor handles audio preprocessing for VibeVoice models, including:
- Audio format conversion (stereo to mono)
- Optional audio normalization
- Streaming support for infinite-length audio
Args:
sampling_rate (int, optional): Expected sampling rate. Defaults to 24000.
normalize_audio (bool, optional): Whether to normalize audio. Defaults to True.
target_dB_FS (float, optional): Target dB FS for normalization. Defaults to -25.
eps (float, optional): Small value for numerical stability. Defaults to 1e-6.
"""
model_input_names = ["input_features"]
def __init__(
self,
sampling_rate: int = 24000,
normalize_audio: bool = True,
target_dB_FS: float = -25,
eps: float = 1e-6,
**kwargs,
):
super().__init__(**kwargs)
self.sampling_rate = sampling_rate
self.normalize_audio = normalize_audio
# Initialize audio normalizer if needed
if self.normalize_audio:
self.normalizer = AudioNormalizer(target_dB_FS=target_dB_FS, eps=eps)
else:
self.normalizer = None
# Save config
self.feature_extractor_dict = {
"sampling_rate": sampling_rate,
"normalize_audio": normalize_audio,
"target_dB_FS": target_dB_FS,
"eps": eps,
}
def _ensure_mono(self, audio: np.ndarray) -> np.ndarray:
"""
Convert stereo audio to mono if needed.
Args:
audio (np.ndarray): Input audio array
Returns:
np.ndarray: Mono audio array
"""
if len(audio.shape) == 1:
return audio
elif len(audio.shape) == 2:
if audio.shape[0] == 2: # (2, time)
return np.mean(audio, axis=0)
elif audio.shape[1] == 2: # (time, 2)
return np.mean(audio, axis=1)
else:
# If one dimension is 1, squeeze it
if audio.shape[0] == 1:
return audio.squeeze(0)
elif audio.shape[1] == 1:
return audio.squeeze(1)
else:
raise ValueError(f"Unexpected audio shape: {audio.shape}")
else:
raise ValueError(f"Audio should be 1D or 2D, got shape: {audio.shape}")
def _process_single_audio(self, audio: Union[np.ndarray, List[float]]) -> np.ndarray:
"""
Process a single audio array.
Args:
audio: Single audio input
Returns:
np.ndarray: Processed audio
"""
# Convert to numpy array
if not isinstance(audio, np.ndarray):
audio = np.array(audio, dtype=np.float32)
else:
audio = audio.astype(np.float32)
# Ensure mono
audio = self._ensure_mono(audio)
# Normalize if requested
if self.normalize_audio and self.normalizer is not None:
audio = self.normalizer(audio)
return audio
def __call__(
self,
audio: Union[str, np.ndarray, List[float], List[np.ndarray], List[List[float]], List[str]] = None,
sampling_rate: Optional[int] = None,
return_tensors: Optional[str] = None,
**kwargs,
):
"""
Process audio for VibeVoice models.
Args:
audio: Audio input(s) to process. Can be:
- str: Path to audio file
- np.ndarray: Audio array
- List[float]: Audio as list of floats
- List[np.ndarray]: Batch of audio arrays
- List[str]: Batch of audio file paths
sampling_rate (int, optional): Sampling rate of the input audio
return_tensors (str, optional): Return format ('pt' for PyTorch, 'np' for NumPy)
Returns:
dict: Processed audio inputs with keys:
- input_features: Audio tensor(s) ready for the model
"""
if audio is None:
raise ValueError("Audio input is required")
# Validate sampling rate
if sampling_rate is not None and sampling_rate != self.sampling_rate:
logger.warning(
f"Input sampling rate ({sampling_rate}) differs from expected "
f"sampling rate ({self.sampling_rate}). Please resample your audio."
)
# Handle different input types
if isinstance(audio, str):
# Single audio file path
audio = self._load_audio_from_path(audio)
is_batched = False
elif isinstance(audio, list):
if len(audio) == 0:
raise ValueError("Empty audio list provided")
# Check if it's a list of file paths
if all(isinstance(item, str) for item in audio):
# Batch of audio file paths
audio = [self._load_audio_from_path(path) for path in audio]
is_batched = True
else:
# Check if it's batched audio arrays
is_batched = isinstance(audio[0], (np.ndarray, list))
else:
# Single audio array or list
is_batched = False
# Process audio
if is_batched:
processed_audio = [self._process_single_audio(a) for a in audio]
else:
processed_audio = [self._process_single_audio(audio)]
# Convert to tensors if requested
if return_tensors == "pt":
if len(processed_audio) == 1:
# Create a proper batch dimension (B, T)
input_features = torch.from_numpy(processed_audio[0]).unsqueeze(0).unsqueeze(1)
else:
# For batched input with different lengths, create a batch properly
input_features = torch.stack([torch.from_numpy(a) for a in processed_audio]).unsqueeze(1)
elif return_tensors == "np":
if len(processed_audio) == 1:
input_features = processed_audio[0][np.newaxis, np.newaxis, :]
else:
input_features = np.stack(processed_audio)[:, np.newaxis, :]
else:
input_features = processed_audio[0] if len(processed_audio) == 1 else processed_audio
outputs = {
"audio": input_features, # Use "audio" instead of "input_features"
}
return outputs
def _load_audio_from_path(self, audio_path: str) -> np.ndarray:
"""
Load audio from file path.
Args:
audio_path (str): Path to audio file
Returns:
np.ndarray: Loaded audio array
"""
# Get file extension to determine loading method
file_ext = os.path.splitext(audio_path)[1].lower()
if file_ext in ['.wav', '.mp3', '.flac', '.m4a', '.ogg']:
# Audio file - use librosa
import librosa
audio_array, sr = librosa.load(
audio_path,
sr=self.sampling_rate,
mono=True
)
return audio_array
elif file_ext == '.pt':
# PyTorch tensor file
audio_tensor = torch.load(audio_path, map_location='cpu').squeeze()
if isinstance(audio_tensor, torch.Tensor):
audio_array = audio_tensor.numpy()
else:
audio_array = np.array(audio_tensor)
return audio_array.astype(np.float32)
elif file_ext == '.npy':
# NumPy file
audio_array = np.load(audio_path)
return audio_array.astype(np.float32)
else:
raise ValueError(
f"Unsupported file format: {file_ext}. "
f"Supported formats: .wav, .mp3, .flac, .m4a, .ogg, .pt, .npy, .npz"
)
def preprocess_audio(
self,
audio_path_or_array: Union[str, np.ndarray],
normalize: Optional[bool] = None,
) -> np.ndarray:
"""
Convenience method to preprocess audio from file path or array.
This method is kept for backward compatibility but __call__ is recommended.
Args:
audio_path_or_array: Path to audio file or numpy array
normalize: Whether to normalize (overrides default setting)
Returns:
np.ndarray: Preprocessed audio array
"""
if isinstance(audio_path_or_array, str):
audio_array = self._load_audio_from_path(audio_path_or_array)
else:
audio_array = np.array(audio_path_or_array, dtype=np.float32)
# Override normalization setting if specified
original_normalize = self.normalize_audio
if normalize is not None:
self.normalize_audio = normalize
try:
processed = self._process_single_audio(audio_array)
finally:
# Restore original setting
self.normalize_audio = original_normalize
return processed
# Override to_dict method for configuration saving
def to_dict(self) -> Dict[str, Any]:
"""
Convert the object to a dict containing all attributes needed for serialization.
"""
return self.feature_extractor_dict
def save_audio(
self,
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
output_path: str = "output.wav",
sampling_rate: Optional[int] = None,
normalize: bool = False,
batch_prefix: str = "audio_",
):
"""
Save audio data to WAV file(s).
Args:
audio: Audio data to save. Can be:
- torch.Tensor: PyTorch tensor with shape (B, C, T) or (B, T) or (T)
- np.ndarray: NumPy array with shape (B, C, T) or (B, T) or (T)
- List of tensors or arrays
output_path: Path where to save the audio. If saving multiple files,
this is treated as a directory and individual files will be saved inside.
sampling_rate: Sampling rate for the saved audio. Defaults to the processor's rate.
normalize: Whether to normalize audio before saving.
batch_prefix: Prefix for batch files when saving multiple audios.
Returns:
List[str]: Paths to the saved audio files.
"""
if sampling_rate is None:
sampling_rate = self.sampling_rate
try:
import soundfile as sf
except ImportError:
raise ImportError(
"soundfile is required to save audio files. "
"Install it with: pip install soundfile"
)
# Ensure audio is in the right format
if isinstance(audio, torch.Tensor):
# Convert PyTorch tensor to numpy
audio_np = audio.float().detach().cpu().numpy()
elif isinstance(audio, np.ndarray):
audio_np = audio
elif isinstance(audio, list):
# Handle list of tensors or arrays
if all(isinstance(a, torch.Tensor) for a in audio):
audio_np = [a.float().detach().cpu().numpy() for a in audio]
else:
audio_np = audio
else:
raise ValueError(f"Unsupported audio type: {type(audio)}")
saved_paths = []
# Handle based on shape or type
if isinstance(audio_np, list):
# Multiple separate audios to save
output_dir = output_path
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Save each audio
for i, audio_item in enumerate(audio_np):
audio_item = self._prepare_audio_for_save(audio_item, normalize)
file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
sf.write(file_path, audio_item, sampling_rate)
saved_paths.append(file_path)
else:
# Handle different dimensions
if len(audio_np.shape) >= 3: # (B, C, T) or similar
# Get batch size
batch_size = audio_np.shape[0]
if batch_size > 1:
# Multiple audios in a batch
output_dir = output_path
# Ensure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Save each audio in the batch
for i in range(batch_size):
# Extract single audio and remove channel dim if present
single_audio = audio_np[i]
if len(single_audio.shape) > 1:
if single_audio.shape[0] == 1: # (1, T)
single_audio = single_audio.squeeze(0)
single_audio = self._prepare_audio_for_save(single_audio, normalize)
file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
sf.write(file_path, single_audio, sampling_rate)
saved_paths.append(file_path)
else:
# Single audio with batch and channel dims
audio_item = audio_np.squeeze() # Remove batch and channel dimensions
audio_item = self._prepare_audio_for_save(audio_item, normalize)
sf.write(output_path, audio_item, sampling_rate)
saved_paths.append(output_path)
else:
# Single audio without batch dimension
audio_item = self._prepare_audio_for_save(audio_np, normalize)
sf.write(output_path, audio_item, sampling_rate)
saved_paths.append(output_path)
return saved_paths
def _prepare_audio_for_save(self, audio: np.ndarray, normalize: bool) -> np.ndarray:
"""
Prepare audio for saving by ensuring it's the right shape and optionally normalizing.
Args:
audio: Audio data as numpy array
normalize: Whether to normalize audio
Returns:
np.ndarray: Processed audio ready for saving
"""
# Ensure right dimensionality
if len(audio.shape) > 1 and audio.shape[0] == 1: # (1, T)
audio = audio.squeeze(0)
# Normalize if requested
if normalize:
max_val = np.abs(audio).max()
if max_val > 0:
audio = audio / max_val
return audio
__all__ = ["VibeVoiceTokenizerProcessor", "AudioNormalizer"]