Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Processor class for VibeVoice models. | |
""" | |
import os | |
import json | |
import warnings | |
from typing import List, Optional, Union, Dict, Any | |
import numpy as np | |
import torch | |
from transformers.feature_extraction_utils import FeatureExtractionMixin | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class AudioNormalizer: | |
""" | |
Audio normalization class for VibeVoice tokenizer. | |
This class provides audio normalization to ensure consistent input levels | |
for the VibeVoice tokenizer while maintaining audio quality. | |
""" | |
def __init__(self, target_dB_FS: float = -25, eps: float = 1e-6): | |
""" | |
Initialize the audio normalizer. | |
Args: | |
target_dB_FS (float): Target dB FS level for the audio. Default: -25 | |
eps (float): Small value to avoid division by zero. Default: 1e-6 | |
""" | |
self.target_dB_FS = target_dB_FS | |
self.eps = eps | |
def tailor_dB_FS(self, audio: np.ndarray) -> tuple: | |
""" | |
Adjust the audio to the target dB FS level. | |
Args: | |
audio (np.ndarray): Input audio signal | |
Returns: | |
tuple: (normalized_audio, rms, scalar) | |
""" | |
rms = np.sqrt(np.mean(audio**2)) | |
scalar = 10 ** (self.target_dB_FS / 20) / (rms + self.eps) | |
normalized_audio = audio * scalar | |
return normalized_audio, rms, scalar | |
def avoid_clipping(self, audio: np.ndarray, scalar: Optional[float] = None) -> tuple: | |
""" | |
Avoid clipping by scaling down if necessary. | |
Args: | |
audio (np.ndarray): Input audio signal | |
scalar (float, optional): Explicit scaling factor | |
Returns: | |
tuple: (normalized_audio, scalar) | |
""" | |
if scalar is None: | |
max_val = np.max(np.abs(audio)) | |
if max_val > 1.0: | |
scalar = max_val + self.eps | |
else: | |
scalar = 1.0 | |
return audio / scalar, scalar | |
def __call__(self, audio: np.ndarray) -> np.ndarray: | |
""" | |
Normalize the audio by adjusting to target dB FS and avoiding clipping. | |
Args: | |
audio (np.ndarray): Input audio signal | |
Returns: | |
np.ndarray: Normalized audio signal | |
""" | |
# First adjust to target dB FS | |
audio, _, _ = self.tailor_dB_FS(audio) | |
# Then avoid clipping | |
audio, _ = self.avoid_clipping(audio) | |
return audio | |
# Change from ProcessorMixin to FeatureExtractionMixin which is designed for single components | |
class VibeVoiceTokenizerProcessor(FeatureExtractionMixin): | |
""" | |
Processor for VibeVoice acoustic tokenizer models. | |
This processor handles audio preprocessing for VibeVoice models, including: | |
- Audio format conversion (stereo to mono) | |
- Optional audio normalization | |
- Streaming support for infinite-length audio | |
Args: | |
sampling_rate (int, optional): Expected sampling rate. Defaults to 24000. | |
normalize_audio (bool, optional): Whether to normalize audio. Defaults to True. | |
target_dB_FS (float, optional): Target dB FS for normalization. Defaults to -25. | |
eps (float, optional): Small value for numerical stability. Defaults to 1e-6. | |
""" | |
model_input_names = ["input_features"] | |
def __init__( | |
self, | |
sampling_rate: int = 24000, | |
normalize_audio: bool = True, | |
target_dB_FS: float = -25, | |
eps: float = 1e-6, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.sampling_rate = sampling_rate | |
self.normalize_audio = normalize_audio | |
# Initialize audio normalizer if needed | |
if self.normalize_audio: | |
self.normalizer = AudioNormalizer(target_dB_FS=target_dB_FS, eps=eps) | |
else: | |
self.normalizer = None | |
# Save config | |
self.feature_extractor_dict = { | |
"sampling_rate": sampling_rate, | |
"normalize_audio": normalize_audio, | |
"target_dB_FS": target_dB_FS, | |
"eps": eps, | |
} | |
def _ensure_mono(self, audio: np.ndarray) -> np.ndarray: | |
""" | |
Convert stereo audio to mono if needed. | |
Args: | |
audio (np.ndarray): Input audio array | |
Returns: | |
np.ndarray: Mono audio array | |
""" | |
if len(audio.shape) == 1: | |
return audio | |
elif len(audio.shape) == 2: | |
if audio.shape[0] == 2: # (2, time) | |
return np.mean(audio, axis=0) | |
elif audio.shape[1] == 2: # (time, 2) | |
return np.mean(audio, axis=1) | |
else: | |
# If one dimension is 1, squeeze it | |
if audio.shape[0] == 1: | |
return audio.squeeze(0) | |
elif audio.shape[1] == 1: | |
return audio.squeeze(1) | |
else: | |
raise ValueError(f"Unexpected audio shape: {audio.shape}") | |
else: | |
raise ValueError(f"Audio should be 1D or 2D, got shape: {audio.shape}") | |
def _process_single_audio(self, audio: Union[np.ndarray, List[float]]) -> np.ndarray: | |
""" | |
Process a single audio array. | |
Args: | |
audio: Single audio input | |
Returns: | |
np.ndarray: Processed audio | |
""" | |
# Convert to numpy array | |
if not isinstance(audio, np.ndarray): | |
audio = np.array(audio, dtype=np.float32) | |
else: | |
audio = audio.astype(np.float32) | |
# Ensure mono | |
audio = self._ensure_mono(audio) | |
# Normalize if requested | |
if self.normalize_audio and self.normalizer is not None: | |
audio = self.normalizer(audio) | |
return audio | |
def __call__( | |
self, | |
audio: Union[str, np.ndarray, List[float], List[np.ndarray], List[List[float]], List[str]] = None, | |
sampling_rate: Optional[int] = None, | |
return_tensors: Optional[str] = None, | |
**kwargs, | |
): | |
""" | |
Process audio for VibeVoice models. | |
Args: | |
audio: Audio input(s) to process. Can be: | |
- str: Path to audio file | |
- np.ndarray: Audio array | |
- List[float]: Audio as list of floats | |
- List[np.ndarray]: Batch of audio arrays | |
- List[str]: Batch of audio file paths | |
sampling_rate (int, optional): Sampling rate of the input audio | |
return_tensors (str, optional): Return format ('pt' for PyTorch, 'np' for NumPy) | |
Returns: | |
dict: Processed audio inputs with keys: | |
- input_features: Audio tensor(s) ready for the model | |
""" | |
if audio is None: | |
raise ValueError("Audio input is required") | |
# Validate sampling rate | |
if sampling_rate is not None and sampling_rate != self.sampling_rate: | |
logger.warning( | |
f"Input sampling rate ({sampling_rate}) differs from expected " | |
f"sampling rate ({self.sampling_rate}). Please resample your audio." | |
) | |
# Handle different input types | |
if isinstance(audio, str): | |
# Single audio file path | |
audio = self._load_audio_from_path(audio) | |
is_batched = False | |
elif isinstance(audio, list): | |
if len(audio) == 0: | |
raise ValueError("Empty audio list provided") | |
# Check if it's a list of file paths | |
if all(isinstance(item, str) for item in audio): | |
# Batch of audio file paths | |
audio = [self._load_audio_from_path(path) for path in audio] | |
is_batched = True | |
else: | |
# Check if it's batched audio arrays | |
is_batched = isinstance(audio[0], (np.ndarray, list)) | |
else: | |
# Single audio array or list | |
is_batched = False | |
# Process audio | |
if is_batched: | |
processed_audio = [self._process_single_audio(a) for a in audio] | |
else: | |
processed_audio = [self._process_single_audio(audio)] | |
# Convert to tensors if requested | |
if return_tensors == "pt": | |
if len(processed_audio) == 1: | |
# Create a proper batch dimension (B, T) | |
input_features = torch.from_numpy(processed_audio[0]).unsqueeze(0).unsqueeze(1) | |
else: | |
# For batched input with different lengths, create a batch properly | |
input_features = torch.stack([torch.from_numpy(a) for a in processed_audio]).unsqueeze(1) | |
elif return_tensors == "np": | |
if len(processed_audio) == 1: | |
input_features = processed_audio[0][np.newaxis, np.newaxis, :] | |
else: | |
input_features = np.stack(processed_audio)[:, np.newaxis, :] | |
else: | |
input_features = processed_audio[0] if len(processed_audio) == 1 else processed_audio | |
outputs = { | |
"audio": input_features, # Use "audio" instead of "input_features" | |
} | |
return outputs | |
def _load_audio_from_path(self, audio_path: str) -> np.ndarray: | |
""" | |
Load audio from file path. | |
Args: | |
audio_path (str): Path to audio file | |
Returns: | |
np.ndarray: Loaded audio array | |
""" | |
# Get file extension to determine loading method | |
file_ext = os.path.splitext(audio_path)[1].lower() | |
if file_ext in ['.wav', '.mp3', '.flac', '.m4a', '.ogg']: | |
# Audio file - use librosa | |
import librosa | |
audio_array, sr = librosa.load( | |
audio_path, | |
sr=self.sampling_rate, | |
mono=True | |
) | |
return audio_array | |
elif file_ext == '.pt': | |
# PyTorch tensor file | |
audio_tensor = torch.load(audio_path, map_location='cpu').squeeze() | |
if isinstance(audio_tensor, torch.Tensor): | |
audio_array = audio_tensor.numpy() | |
else: | |
audio_array = np.array(audio_tensor) | |
return audio_array.astype(np.float32) | |
elif file_ext == '.npy': | |
# NumPy file | |
audio_array = np.load(audio_path) | |
return audio_array.astype(np.float32) | |
else: | |
raise ValueError( | |
f"Unsupported file format: {file_ext}. " | |
f"Supported formats: .wav, .mp3, .flac, .m4a, .ogg, .pt, .npy, .npz" | |
) | |
def preprocess_audio( | |
self, | |
audio_path_or_array: Union[str, np.ndarray], | |
normalize: Optional[bool] = None, | |
) -> np.ndarray: | |
""" | |
Convenience method to preprocess audio from file path or array. | |
This method is kept for backward compatibility but __call__ is recommended. | |
Args: | |
audio_path_or_array: Path to audio file or numpy array | |
normalize: Whether to normalize (overrides default setting) | |
Returns: | |
np.ndarray: Preprocessed audio array | |
""" | |
if isinstance(audio_path_or_array, str): | |
audio_array = self._load_audio_from_path(audio_path_or_array) | |
else: | |
audio_array = np.array(audio_path_or_array, dtype=np.float32) | |
# Override normalization setting if specified | |
original_normalize = self.normalize_audio | |
if normalize is not None: | |
self.normalize_audio = normalize | |
try: | |
processed = self._process_single_audio(audio_array) | |
finally: | |
# Restore original setting | |
self.normalize_audio = original_normalize | |
return processed | |
# Override to_dict method for configuration saving | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Convert the object to a dict containing all attributes needed for serialization. | |
""" | |
return self.feature_extractor_dict | |
def save_audio( | |
self, | |
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]], | |
output_path: str = "output.wav", | |
sampling_rate: Optional[int] = None, | |
normalize: bool = False, | |
batch_prefix: str = "audio_", | |
): | |
""" | |
Save audio data to WAV file(s). | |
Args: | |
audio: Audio data to save. Can be: | |
- torch.Tensor: PyTorch tensor with shape (B, C, T) or (B, T) or (T) | |
- np.ndarray: NumPy array with shape (B, C, T) or (B, T) or (T) | |
- List of tensors or arrays | |
output_path: Path where to save the audio. If saving multiple files, | |
this is treated as a directory and individual files will be saved inside. | |
sampling_rate: Sampling rate for the saved audio. Defaults to the processor's rate. | |
normalize: Whether to normalize audio before saving. | |
batch_prefix: Prefix for batch files when saving multiple audios. | |
Returns: | |
List[str]: Paths to the saved audio files. | |
""" | |
if sampling_rate is None: | |
sampling_rate = self.sampling_rate | |
try: | |
import soundfile as sf | |
except ImportError: | |
raise ImportError( | |
"soundfile is required to save audio files. " | |
"Install it with: pip install soundfile" | |
) | |
# Ensure audio is in the right format | |
if isinstance(audio, torch.Tensor): | |
# Convert PyTorch tensor to numpy | |
audio_np = audio.float().detach().cpu().numpy() | |
elif isinstance(audio, np.ndarray): | |
audio_np = audio | |
elif isinstance(audio, list): | |
# Handle list of tensors or arrays | |
if all(isinstance(a, torch.Tensor) for a in audio): | |
audio_np = [a.float().detach().cpu().numpy() for a in audio] | |
else: | |
audio_np = audio | |
else: | |
raise ValueError(f"Unsupported audio type: {type(audio)}") | |
saved_paths = [] | |
# Handle based on shape or type | |
if isinstance(audio_np, list): | |
# Multiple separate audios to save | |
output_dir = output_path | |
# Ensure output directory exists | |
os.makedirs(output_dir, exist_ok=True) | |
# Save each audio | |
for i, audio_item in enumerate(audio_np): | |
audio_item = self._prepare_audio_for_save(audio_item, normalize) | |
file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav") | |
sf.write(file_path, audio_item, sampling_rate) | |
saved_paths.append(file_path) | |
else: | |
# Handle different dimensions | |
if len(audio_np.shape) >= 3: # (B, C, T) or similar | |
# Get batch size | |
batch_size = audio_np.shape[0] | |
if batch_size > 1: | |
# Multiple audios in a batch | |
output_dir = output_path | |
# Ensure output directory exists | |
os.makedirs(output_dir, exist_ok=True) | |
# Save each audio in the batch | |
for i in range(batch_size): | |
# Extract single audio and remove channel dim if present | |
single_audio = audio_np[i] | |
if len(single_audio.shape) > 1: | |
if single_audio.shape[0] == 1: # (1, T) | |
single_audio = single_audio.squeeze(0) | |
single_audio = self._prepare_audio_for_save(single_audio, normalize) | |
file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav") | |
sf.write(file_path, single_audio, sampling_rate) | |
saved_paths.append(file_path) | |
else: | |
# Single audio with batch and channel dims | |
audio_item = audio_np.squeeze() # Remove batch and channel dimensions | |
audio_item = self._prepare_audio_for_save(audio_item, normalize) | |
sf.write(output_path, audio_item, sampling_rate) | |
saved_paths.append(output_path) | |
else: | |
# Single audio without batch dimension | |
audio_item = self._prepare_audio_for_save(audio_np, normalize) | |
sf.write(output_path, audio_item, sampling_rate) | |
saved_paths.append(output_path) | |
return saved_paths | |
def _prepare_audio_for_save(self, audio: np.ndarray, normalize: bool) -> np.ndarray: | |
""" | |
Prepare audio for saving by ensuring it's the right shape and optionally normalizing. | |
Args: | |
audio: Audio data as numpy array | |
normalize: Whether to normalize audio | |
Returns: | |
np.ndarray: Processed audio ready for saving | |
""" | |
# Ensure right dimensionality | |
if len(audio.shape) > 1 and audio.shape[0] == 1: # (1, T) | |
audio = audio.squeeze(0) | |
# Normalize if requested | |
if normalize: | |
max_val = np.abs(audio).max() | |
if max_val > 0: | |
audio = audio / max_val | |
return audio | |
__all__ = ["VibeVoiceTokenizerProcessor", "AudioNormalizer"] |