VibeVoice / app.py
yasserrmd's picture
Update app.py
3ad533a verified
raw
history blame
8.94 kB
import argparse
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
from spaces import GPU
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceDemo:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
self.model_path = model_path
self.device = device
self.inference_steps = inference_steps
self.is_generating = False
self.processor = None
self.model = None
self.available_voices = {}
self.load_model()
self.setup_voice_presets()
self.load_example_scripts()
def load_model(self):
print(f"Loading processor & model from {self.model_path}")
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map=self.device
)
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
def setup_voice_presets(self):
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
return
wav_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
for wav_file in wav_files:
name = os.path.splitext(wav_file)[0]
self.available_voices[name] = os.path.join(voices_dir, wav_file)
print(f"Voices loaded: {list(self.available_voices.keys())}")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.array([])
@GPU
def generate_podcast(self, num_speakers: int, script: str,
speaker_1: str = None, speaker_2: str = None,
speaker_3: str = None, speaker_4: str = None,
cfg_scale: float = 1.3):
"""Final audio generation only (no streaming)."""
self.is_generating = True
if not script.strip():
raise gr.Error("Please provide a script.")
if num_speakers < 1 or num_speakers > 4:
raise gr.Error("Number of speakers must be 1–4.")
selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
for i, sp in enumerate(selected):
if not sp or sp not in self.available_voices:
raise gr.Error(f"Invalid speaker {i+1} selection.")
voice_samples = [self.read_audio(self.available_voices[sp]) for sp in selected]
if any(len(v) == 0 for v in voice_samples):
raise gr.Error("Failed to load one or more voice samples.")
# format script
lines = script.strip().split("\n")
formatted = []
for i, line in enumerate(lines):
line = line.strip()
if not line:
continue
if line.startswith("Speaker "):
formatted.append(line)
else:
sp_id = i % num_speakers
formatted.append(f"Speaker {sp_id}: {line}")
formatted_script = "\n".join(formatted)
# processor input
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt"
)
start = time.time()
outputs = self.model.generate(
**inputs,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
verbose=False
)
# Extract audio
if isinstance(outputs, dict) and "audio" in outputs:
audio = outputs["audio"]
else:
audio = outputs
if torch.is_tensor(audio):
audio = audio.float().cpu().numpy()
if audio.ndim > 1:
audio = audio.squeeze()
sample_rate = 24000
audio16 = convert_to_16_bit_wav(audio)
total_dur = len(audio16) / sample_rate
log = f"βœ… Generation complete in {time.time()-start:.1f}s, {total_dur:.1f}s audio"
self.is_generating = False
return (sample_rate, audio16), log
def load_example_scripts(self):
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
self.example_scripts = []
if not os.path.exists(examples_dir):
return
txt_files = sorted([f for f in os.listdir(examples_dir)
if f.lower().endswith('.txt')])
for txt_file in txt_files:
try:
with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
script_content = f.read().strip()
if script_content:
self.example_scripts.append([1, script_content])
except Exception as e:
print(f"Error loading {txt_file}: {e}")
def convert_to_16_bit_wav(data):
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
return (data * 32767).astype(np.int16)
def create_demo_interface(demo_instance: VibeVoiceDemo):
with gr.Blocks(
title="VibeVoice - AI Podcast Generator",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple")
) as interface:
gr.Markdown("## πŸŽ™οΈ VibeVoice Podcast Generator (Final Audio Only)")
num_speakers = gr.Slider(1, 4, value=2, step=1, label="Number of Speakers")
available_speaker_names = list(demo_instance.available_voices.keys())
default_speakers = available_speaker_names[:4]
speaker_selections = []
for i in range(4):
speaker = gr.Dropdown(
choices=available_speaker_names,
value=default_speakers[i] if i < len(default_speakers) else None,
label=f"Speaker {i+1}",
visible=(i < 2)
)
speaker_selections.append(speaker)
cfg_scale = gr.Slider(1.0, 2.0, value=1.3, step=0.05, label="CFG Scale")
script_input = gr.Textbox(
label="Podcast Script",
placeholder="Enter your script here...",
lines=10
)
generate_btn = gr.Button("πŸš€ Generate Podcast")
audio_output = gr.Audio(
label="Generated Podcast (Download)",
type="numpy",
show_download_button=True
)
log_output = gr.Textbox(label="Log", interactive=False, lines=5)
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
try:
speakers = speakers_and_params[:4]
cfg_scale = speakers_and_params[4]
audio, log = demo_instance.generate_podcast(
num_speakers=int(num_speakers),
script=script,
speaker_1=speakers[0],
speaker_2=speakers[1],
speaker_3=speakers[2],
speaker_4=speakers[3],
cfg_scale=cfg_scale
)
return audio, log
except Exception as e:
traceback.print_exc()
return None, f"❌ Error: {str(e)}"
generate_btn.click(
fn=generate_podcast_wrapper,
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
outputs=[audio_output, log_output]
)
return interface
def run_demo(
model_path: str = "microsoft/VibeVoice-1.5B",
device: str = "cuda",
inference_steps: int = 5,
share: bool = True,
):
set_seed(42)
demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
interface = create_demo_interface(demo_instance)
interface.queue().launch(
share=share,
server_name="0.0.0.0" if share else "127.0.0.1",
show_error=True,
show_api=False
)
if __name__ == "__main__":
run_demo()