Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import time | |
import numpy as np | |
import gradio as gr | |
import librosa | |
import soundfile as sf | |
import torch | |
import traceback | |
from spaces import GPU | |
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig | |
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference | |
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor | |
from transformers.utils import logging | |
from transformers import set_seed | |
logging.set_verbosity_info() | |
logger = logging.get_logger(__name__) | |
class VibeVoiceDemo: | |
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5): | |
self.model_path = model_path | |
self.device = device | |
self.inference_steps = inference_steps | |
self.is_generating = False | |
self.processor = None | |
self.model = None | |
self.available_voices = {} | |
self.load_model() | |
self.setup_voice_presets() | |
self.load_example_scripts() | |
def load_model(self): | |
print(f"Loading processor & model from {self.model_path}") | |
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path) | |
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained( | |
self.model_path, | |
torch_dtype=torch.bfloat16, | |
device_map=self.device | |
) | |
self.model.eval() | |
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps) | |
def setup_voice_presets(self): | |
voices_dir = os.path.join(os.path.dirname(__file__), "voices") | |
if not os.path.exists(voices_dir): | |
print(f"Warning: Voices directory not found at {voices_dir}") | |
return | |
wav_files = [f for f in os.listdir(voices_dir) | |
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))] | |
for wav_file in wav_files: | |
name = os.path.splitext(wav_file)[0] | |
self.available_voices[name] = os.path.join(voices_dir, wav_file) | |
print(f"Voices loaded: {list(self.available_voices.keys())}") | |
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray: | |
try: | |
wav, sr = sf.read(audio_path) | |
if len(wav.shape) > 1: | |
wav = np.mean(wav, axis=1) | |
if sr != target_sr: | |
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr) | |
return wav | |
except Exception as e: | |
print(f"Error reading audio {audio_path}: {e}") | |
return np.array([]) | |
def generate_podcast(self, num_speakers: int, script: str, | |
speaker_1: str = None, speaker_2: str = None, | |
speaker_3: str = None, speaker_4: str = None, | |
cfg_scale: float = 1.3): | |
"""Final audio generation only (no streaming).""" | |
self.is_generating = True | |
if not script.strip(): | |
raise gr.Error("Please provide a script.") | |
if num_speakers < 1 or num_speakers > 4: | |
raise gr.Error("Number of speakers must be 1β4.") | |
selected = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers] | |
for i, sp in enumerate(selected): | |
if not sp or sp not in self.available_voices: | |
raise gr.Error(f"Invalid speaker {i+1} selection.") | |
voice_samples = [self.read_audio(self.available_voices[sp]) for sp in selected] | |
if any(len(v) == 0 for v in voice_samples): | |
raise gr.Error("Failed to load one or more voice samples.") | |
# format script | |
lines = script.strip().split("\n") | |
formatted = [] | |
for i, line in enumerate(lines): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith("Speaker "): | |
formatted.append(line) | |
else: | |
sp_id = i % num_speakers | |
formatted.append(f"Speaker {sp_id}: {line}") | |
formatted_script = "\n".join(formatted) | |
# processor input | |
inputs = self.processor( | |
text=[formatted_script], | |
voice_samples=[voice_samples], | |
padding=True, | |
return_tensors="pt" | |
) | |
start = time.time() | |
outputs = self.model.generate( | |
**inputs, | |
cfg_scale=cfg_scale, | |
tokenizer=self.processor.tokenizer, | |
verbose=False | |
) | |
# Extract audio | |
if isinstance(outputs, dict) and "audio" in outputs: | |
audio = outputs["audio"] | |
else: | |
audio = outputs | |
if torch.is_tensor(audio): | |
audio = audio.float().cpu().numpy() | |
if audio.ndim > 1: | |
audio = audio.squeeze() | |
sample_rate = 24000 | |
audio16 = convert_to_16_bit_wav(audio) | |
total_dur = len(audio16) / sample_rate | |
log = f"β Generation complete in {time.time()-start:.1f}s, {total_dur:.1f}s audio" | |
self.is_generating = False | |
return (sample_rate, audio16), log | |
def load_example_scripts(self): | |
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples") | |
self.example_scripts = [] | |
if not os.path.exists(examples_dir): | |
return | |
txt_files = sorted([f for f in os.listdir(examples_dir) | |
if f.lower().endswith('.txt')]) | |
for txt_file in txt_files: | |
try: | |
with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f: | |
script_content = f.read().strip() | |
if script_content: | |
self.example_scripts.append([1, script_content]) | |
except Exception as e: | |
print(f"Error loading {txt_file}: {e}") | |
def convert_to_16_bit_wav(data): | |
if torch.is_tensor(data): | |
data = data.detach().cpu().numpy() | |
data = np.array(data) | |
if np.max(np.abs(data)) > 1.0: | |
data = data / np.max(np.abs(data)) | |
return (data * 32767).astype(np.int16) | |
def create_demo_interface(demo_instance: VibeVoiceDemo): | |
with gr.Blocks( | |
title="VibeVoice - AI Podcast Generator", | |
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple") | |
) as interface: | |
gr.Markdown("## ποΈ VibeVoice Podcast Generator (Final Audio Only)") | |
num_speakers = gr.Slider(1, 4, value=2, step=1, label="Number of Speakers") | |
available_speaker_names = list(demo_instance.available_voices.keys()) | |
default_speakers = available_speaker_names[:4] | |
speaker_selections = [] | |
for i in range(4): | |
speaker = gr.Dropdown( | |
choices=available_speaker_names, | |
value=default_speakers[i] if i < len(default_speakers) else None, | |
label=f"Speaker {i+1}", | |
visible=(i < 2) | |
) | |
speaker_selections.append(speaker) | |
cfg_scale = gr.Slider(1.0, 2.0, value=1.3, step=0.05, label="CFG Scale") | |
script_input = gr.Textbox( | |
label="Podcast Script", | |
placeholder="Enter your script here...", | |
lines=10 | |
) | |
generate_btn = gr.Button("π Generate Podcast") | |
audio_output = gr.Audio( | |
label="Generated Podcast (Download)", | |
type="numpy", | |
show_download_button=True | |
) | |
log_output = gr.Textbox(label="Log", interactive=False, lines=5) | |
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params): | |
try: | |
speakers = speakers_and_params[:4] | |
cfg_scale = speakers_and_params[4] | |
audio, log = demo_instance.generate_podcast( | |
num_speakers=int(num_speakers), | |
script=script, | |
speaker_1=speakers[0], | |
speaker_2=speakers[1], | |
speaker_3=speakers[2], | |
speaker_4=speakers[3], | |
cfg_scale=cfg_scale | |
) | |
return audio, log | |
except Exception as e: | |
traceback.print_exc() | |
return None, f"β Error: {str(e)}" | |
generate_btn.click( | |
fn=generate_podcast_wrapper, | |
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale], | |
outputs=[audio_output, log_output] | |
) | |
return interface | |
def run_demo( | |
model_path: str = "microsoft/VibeVoice-1.5B", | |
device: str = "cuda", | |
inference_steps: int = 5, | |
share: bool = True, | |
): | |
set_seed(42) | |
demo_instance = VibeVoiceDemo(model_path, device, inference_steps) | |
interface = create_demo_interface(demo_instance) | |
interface.queue().launch( | |
share=share, | |
server_name="0.0.0.0" if share else "127.0.0.1", | |
show_error=True, | |
show_api=False | |
) | |
if __name__ == "__main__": | |
run_demo() | |