CodeCompliance / app.py
yasserrmd's picture
Create app.py
ed2b3c7 verified
raw
history blame
1.84 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient()
# Function to interact with the Qwen2.5-32B model and analyze code for compliance
def analyze_compliance(code, compliance_standard):
prompt = f"Analyze the following code for {compliance_standard} compliance and suggest modifications or refactoring to meet the guidelines:\n\n{code}"
messages = [
{"role": "user", "content": prompt}
]
# Create a stream to receive generated content
stream = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
messages=messages,
temperature=0.5,
max_tokens=1024,
top_p=0.7,
stream=True
)
# Collect the output from the stream
compliance_suggestions = ""
for chunk in stream:
compliance_suggestions += chunk.choices[0].delta.content
return compliance_suggestions
# Create Gradio interface
with gr.Blocks() as app:
gr.Markdown("## Legal and Compliance Code Advisor")
gr.Markdown("Analyze your code for legal compliance standards (e.g., GDPR, HIPAA) and receive modification suggestions.")
with gr.Row():
code_input = gr.Textbox(lines=10, label="Code Snippet", placeholder="Enter your code here")
compliance_standard = gr.Dropdown(
choices=["GDPR", "HIPAA", "PCI-DSS", "SOC 2", "ISO 27001"],
label="Compliance Standard",
value="GDPR"
)
output_text = gr.Textbox(label="Compliance Suggestions", placeholder="Compliance suggestions will appear here...")
analyze_button = gr.Button("Analyze Compliance")
analyze_button.click(fn=analyze_compliance, inputs=[code_input, compliance_standard], outputs=output_text)
# Run the Gradio app
app.launch()