Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- groq_client.py +78 -0
- main.py +43 -0
- models.py +9 -0
- requirements.txt +10 -0
groq_client.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from groq import Groq
|
2 |
+
from typing import List, Dict
|
3 |
+
|
4 |
+
client = Groq()
|
5 |
+
|
6 |
+
async def generate_questions(career: str, qualifications: str) -> Dict:
|
7 |
+
# Use JSON mode to ensure we get structured data
|
8 |
+
system_prompt = (
|
9 |
+
"You are a helpful assistant that generates a JSON object containing 5 psychological questions as an array of objects."
|
10 |
+
"Each object has a question string and four choices labeled A, B, C, D."
|
11 |
+
"The questions should assess capability for the career as per the qualification"
|
12 |
+
"and should be psychological not anyhting related to the career . Respond ONLY with valid JSON."
|
13 |
+
" The question should be understandable by the qualifications."
|
14 |
+
" It should always follow the json schema."
|
15 |
+
"{ \"$schema\": \"http://json-schema.org/draft-07/schema#\", \"$id\": \"http://example.com/schemas/questions.schema.json\", \"title\": \"Questions Schema\", \"description\": \"A schema describing a list of questions and their choices.\", \"type\": \"object\", \"properties\": { \"questions\": { \"type\": \"array\", \"description\": \"An array of questions.\", \"items\": { \"type\": \"object\", \"properties\": { \"question\": { \"type\": \"string\", \"description\": \"The text of the question.\" }, \"choices\": { \"type\": \"object\", \"description\": \"An object containing multiple choice options.\", \"properties\": { \"A\": { \"type\": \"string\", \"description\": \"Option A answer text.\" }, \"B\": { \"type\": \"string\", \"description\": \"Option B answer text.\" }, \"C\": { \"type\": \"string\", \"description\": \"Option C answer text.\" }, \"D\": { \"type\": \"string\", \"description\": \"Option D answer text.\" } }, \"required\": [\"A\", \"B\", \"C\", \"D\"] } }, \"required\": [\"question\", \"choices\"] } } }, \"required\": [\"questions\"] } "
|
16 |
+
)
|
17 |
+
|
18 |
+
response = client.chat.completions.create(
|
19 |
+
messages=[
|
20 |
+
{"role": "system", "content": system_prompt},
|
21 |
+
{
|
22 |
+
"role": "user",
|
23 |
+
"content": f"Career: {career}\nQualifications: {qualifications}\n"
|
24 |
+
f"Generate 5 psychological questions to determine if capable. make the question understable as per the qualification"
|
25 |
+
}
|
26 |
+
],
|
27 |
+
model="llama-3.3-70b-versatile",
|
28 |
+
temperature=0.5,
|
29 |
+
max_tokens=1024,
|
30 |
+
top_p=1,
|
31 |
+
stop=None,
|
32 |
+
stream=False,
|
33 |
+
response_format={"type": "json_object"} # Ensures JSON response
|
34 |
+
)
|
35 |
+
print(response.choices[0].message.content)
|
36 |
+
return response.choices[0].message.content
|
37 |
+
|
38 |
+
async def evaluate_answers(career: str, qualifications: str, answers: Dict[str, str]) -> Dict:
|
39 |
+
# answers is a dict mapping question_index to chosen answer, e.g. {"0": "A", "1": "C", ...}
|
40 |
+
|
41 |
+
|
42 |
+
system_prompt = (
|
43 |
+
"You are a helpful assistant. You receive a career, qualifications, and "
|
44 |
+
"user answers to previously generated psychological questions. Your primary goal is to assess "
|
45 |
+
"the user's psychological readiness for the career based on their answers. If psychologically capable, "
|
46 |
+
"provide a roadmap tailored to their current qualifications and stage in life to help them achieve the career. "
|
47 |
+
"If they are not psychologically ready, explain the challenges they might face and suggest alternative careers "
|
48 |
+
"aligned with their strengths, along with motivational guidance."
|
49 |
+
"career options and provide motivation."
|
50 |
+
"in a structured JSON: { 'capable': true, 'roadmap': ['Step 1: Gain experience', 'Step 2: Apply for jobs'], }. If not capable, "
|
51 |
+
"suggest alternative careers: { 'capable': false, 'alternatives': [list_of_careers...] }."
|
52 |
+
"and also details evaluation report as statement and also provide some motivation even if capability is false"
|
53 |
+
"Respond ONLY with valid JSON.with following json schema"
|
54 |
+
'{"$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": {"capable": {"type": "boolean"}, "alternatives": {"type": "array", "items": [{"type": "string"}, {"type": "string"}, {"type": "string"}]}, "roadmap": {"type": "array", "items": [{"type": "string"}, {"type": "string"}]}, "evaluation_report": {"type": "string"}, "motivation": {"type": "string"}}, "required": ["capable", "alternatives", "roadmap", "evaluation_report", "motivation"]}'
|
55 |
+
|
56 |
+
)
|
57 |
+
|
58 |
+
user_input = {
|
59 |
+
"career": career,
|
60 |
+
"qualifications": qualifications,
|
61 |
+
"answers": answers
|
62 |
+
}
|
63 |
+
print(answers)
|
64 |
+
response = client.chat.completions.create(
|
65 |
+
messages=[
|
66 |
+
{"role": "system", "content": system_prompt},
|
67 |
+
{"role": "user", "content": f"evaluation should be based on answers {answers} not by qualifications {qualifications} and guide them to achive that as per the qualifations {qualifications} to achieve {career}"}
|
68 |
+
],
|
69 |
+
model="llama-3.3-70b-versatile",
|
70 |
+
temperature=0.5,
|
71 |
+
max_tokens=1024,
|
72 |
+
top_p=1,
|
73 |
+
stop=None,
|
74 |
+
stream=False,
|
75 |
+
response_format={"type": "json_object"} # Ensures JSON response
|
76 |
+
)
|
77 |
+
print(response.choices[0].message.content)
|
78 |
+
return response.choices[0].message.content
|
main.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Form, Request
|
2 |
+
from fastapi.responses import JSONResponse, FileResponse
|
3 |
+
from fastapi.staticfiles import StaticFiles
|
4 |
+
from starlette.middleware.sessions import SessionMiddleware
|
5 |
+
from groq_client import generate_questions, evaluate_answers
|
6 |
+
import json
|
7 |
+
import uvicorn
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Serve static files (HTML, CSS, JS)
|
12 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
13 |
+
|
14 |
+
# Add session middleware
|
15 |
+
app.add_middleware(SessionMiddleware, secret_key="vhjh64@$t4#$%yhgxt45ljo##")
|
16 |
+
|
17 |
+
|
18 |
+
@app.get("/", response_class=FileResponse)
|
19 |
+
async def index():
|
20 |
+
return FileResponse("static/index.html")
|
21 |
+
|
22 |
+
|
23 |
+
@app.post("/start", response_class=JSONResponse)
|
24 |
+
async def start(career: str = Form(...), qualifications: str = Form(...)):
|
25 |
+
# Mock question generation
|
26 |
+
questions_str = await generate_questions(career, qualifications)
|
27 |
+
questions_data = json.loads(questions_str)
|
28 |
+
return {"questions": questions_data["questions"]}
|
29 |
+
|
30 |
+
|
31 |
+
@app.post("/evaluate", response_class=JSONResponse)
|
32 |
+
async def evaluate(payload: dict):
|
33 |
+
# Mock evaluation logic
|
34 |
+
career = payload.get("career")
|
35 |
+
qualifications = payload.get("qualifications")
|
36 |
+
answers = payload.get("answers")
|
37 |
+
result = await evaluate_answers(career, qualifications, answers)
|
38 |
+
result_data=json.loads(result)
|
39 |
+
return {"result": result_data}
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
models.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import Dict, List
|
3 |
+
|
4 |
+
class UserInput(BaseModel):
|
5 |
+
career: str
|
6 |
+
qualifications: str
|
7 |
+
|
8 |
+
class UserAnswers(BaseModel):
|
9 |
+
answers: Dict[int, str]
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.103.2
|
2 |
+
uvicorn==0.22.0
|
3 |
+
jinja2==3.1.2
|
4 |
+
groq==0.13.0
|
5 |
+
python-dotenv==1.0.0
|
6 |
+
requests==2.31.0
|
7 |
+
itsdangerous==2.1.2
|
8 |
+
aiofiles==23.1.0
|
9 |
+
python-multipart==0.0.19
|
10 |
+
uvicorn
|