Spaces:
Runtime error
Runtime error
Commit
·
9608bfe
1
Parent(s):
ad4b6ac
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from plantcv import plantcv as pcv
|
7 |
+
from skimage.feature import local_binary_pattern
|
8 |
+
from io import BytesIO
|
9 |
+
from skimage.feature import hog
|
10 |
+
import base64 # import the base64 module
|
11 |
+
import openpyxl
|
12 |
+
import pandas as pd
|
13 |
+
from gradio import themes
|
14 |
+
import gradio as gr
|
15 |
+
import os
|
16 |
+
from gradio import components
|
17 |
+
import webbrowser
|
18 |
+
|
19 |
+
#from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
|
20 |
+
|
21 |
+
theme = gr.themes.Base(
|
22 |
+
primary_hue="violet",
|
23 |
+
secondary_hue="green",
|
24 |
+
).set(
|
25 |
+
body_background_fill_dark='*checkbox_label_background_fill'
|
26 |
+
)
|
27 |
+
|
28 |
+
def show_excel():
|
29 |
+
os.system("start excel tip_pts_mask.xlsx")
|
30 |
+
|
31 |
+
def image_processing(image,input_type,input_choice):
|
32 |
+
array = np.array(image)
|
33 |
+
array = array.astype(np.float32)
|
34 |
+
gray_img = cv2.cvtColor(array, cv2.COLOR_RGB2GRAY)
|
35 |
+
if input_type == "Tips":
|
36 |
+
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
37 |
+
output_image = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
38 |
+
non_zero_indices = np.nonzero(output_image)
|
39 |
+
|
40 |
+
# Create a new Excel workbook and worksheet
|
41 |
+
workbook = openpyxl.Workbook()
|
42 |
+
worksheet = workbook.active
|
43 |
+
|
44 |
+
# Write the non-zero indices to the worksheet
|
45 |
+
for row, col in zip(*non_zero_indices):
|
46 |
+
worksheet.cell(row=row+1, column=1, value=row)
|
47 |
+
worksheet.cell(row=row+1, column=2, value=col)
|
48 |
+
|
49 |
+
# Save the workbook
|
50 |
+
#excel_tips = 'tip_pts_mask_indices.xlsx'
|
51 |
+
excel_tips= workbook.save('tip_pts_mask_indices.xlsx')
|
52 |
+
|
53 |
+
|
54 |
+
# Create a DataFrame from the branch points mask
|
55 |
+
df = pd.DataFrame(output_image)
|
56 |
+
# Save the DataFrame to an excel file
|
57 |
+
df.to_excel('tip_pts_mask.xlsx', index=False)
|
58 |
+
|
59 |
+
|
60 |
+
elif input_type == "Branches":
|
61 |
+
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
62 |
+
output_image = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
63 |
+
non_zero_indices = np.nonzero(output_image)
|
64 |
+
|
65 |
+
# Create a new Excel workbook and worksheet
|
66 |
+
workbook = openpyxl.Workbook()
|
67 |
+
worksheet = workbook.active
|
68 |
+
|
69 |
+
# Write the non-zero indices to the worksheet
|
70 |
+
for row, col in zip(*non_zero_indices):
|
71 |
+
worksheet.cell(row=row+1, column=1, value=row)
|
72 |
+
worksheet.cell(row=row+1, column=2, value=col)
|
73 |
+
|
74 |
+
# Save the workbook
|
75 |
+
workbook.save('branch_pts_mask_indices.xlsx')
|
76 |
+
|
77 |
+
# Create a DataFrame from the branch points mask
|
78 |
+
df = pd.DataFrame(output_image)
|
79 |
+
# Save the DataFrame to an excel file
|
80 |
+
df.to_excel('branch_pts_mask.xlsx', index=False)
|
81 |
+
|
82 |
+
elif input_type == "Both":
|
83 |
+
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
84 |
+
tips = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
85 |
+
branches = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
86 |
+
output_image = np.zeros_like(img1)
|
87 |
+
output_image[tips > 0] = 254
|
88 |
+
output_image[branches > 0] = 128
|
89 |
+
elif input_type == "sort":
|
90 |
+
image = pcv.morphology.skeletonize(mask=gray_img)
|
91 |
+
img1,edge_objects = pcv.morphology.prune(skel_img=image, size=70, mask=None)
|
92 |
+
#output_image = leaf(skel_img=img1,objects=edge_objects, mask=None)
|
93 |
+
elif input_type == "sift transform":
|
94 |
+
image = pcv.morphology.skeletonize(mask=gray_img)
|
95 |
+
sift = cv2.SIFT_create()
|
96 |
+
kp, des= sift.detectAndCompute(image, None)
|
97 |
+
output_image = cv2.drawKeypoints(image, kp, des)
|
98 |
+
np.savez('sift_descriptors.npz', descriptors=des)
|
99 |
+
|
100 |
+
elif input_type == "lbp transform":
|
101 |
+
radius = 1 # LBP feature radius
|
102 |
+
n_points = 8 * radius # number of LBP feature points
|
103 |
+
output_image = local_binary_pattern(gray_img, n_points, radius)
|
104 |
+
# Save the LBP transformed image as a NumPy array in .npz format
|
105 |
+
np.savez('lbp_transform.npz', lbp=output_image)
|
106 |
+
|
107 |
+
elif input_type == "hog transform":
|
108 |
+
image = pcv.morphology.skeletonize(mask=array)
|
109 |
+
fd,output_image = hog(gray_img, orientations=10, pixels_per_cell=(16, 16),
|
110 |
+
cells_per_block=(1, 1), visualize=True, multichannel=False, channel_axis=-1)
|
111 |
+
np.savez('hog_transform.npz', hog=output_image)
|
112 |
+
elif input_type == "compute all":
|
113 |
+
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
114 |
+
if input_choice == "compute_branches":
|
115 |
+
output_image = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
116 |
+
elif input_choice == "compute_tips":
|
117 |
+
output_image = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
118 |
+
elif input_choice == "compute_both":
|
119 |
+
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
120 |
+
tips = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
121 |
+
branches = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
122 |
+
output_image = np.zeros_like(img1)
|
123 |
+
output_image[tips > 0] = 255
|
124 |
+
output_image[branches > 0] = 128
|
125 |
+
elif input_choice == "compute_sift":
|
126 |
+
image = pcv.morphology.skeletonize(mask=gray_img)
|
127 |
+
sift = cv2.SIFT_create()
|
128 |
+
kp, des= sift.detectAndCompute(image, None)
|
129 |
+
output_image = cv2.drawKeypoints(image, kp, des)
|
130 |
+
elif input_choice == "compute_lbp":
|
131 |
+
radius = 1 # LBP feature radius
|
132 |
+
n_points = 8 * radius # number of LBP feature points
|
133 |
+
output_image = local_binary_pattern(gray_img, n_points, radius)
|
134 |
+
elif input_choice == "compute_hog":
|
135 |
+
image = pcv.morphology.skeletonize(mask=array)
|
136 |
+
fd,output_image = hog(gray_img, orientations=10, pixels_per_cell=(16, 16),
|
137 |
+
cells_per_block=(1, 1), visualize=True, multichannel=False, channel_axis=-1)
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
# Convert the resulting NumPy array back to a PIL image object for Gradio output
|
142 |
+
img2 = Image.fromarray(output_image)
|
143 |
+
if img2.mode == 'F':
|
144 |
+
img2 = img2.convert('RGB')
|
145 |
+
|
146 |
+
# Return the processed image as a Gradio output
|
147 |
+
return img2
|
148 |
+
|
149 |
+
body = (
|
150 |
+
"<center>"
|
151 |
+
"<a href='https://precisiongreenhouse.tamu.edu/'><img src='https://peepleslab.engr.tamu.edu/wp-content/uploads/sites/268/2023/04/AgriLife_Logo-e1681857158121.png' width=1650></a>"
|
152 |
+
"<br>"
|
153 |
+
"This demo extracts the plant statistics and the image features and also stores them. "
|
154 |
+
"<br>"
|
155 |
+
"<a href ='https://precisiongreenhouse.tamu.edu/'>The Texas A&M Plant Growth and Phenotyping Facility Data Analysis Pipeline</a>"
|
156 |
+
"</center>"
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
#@xamples = [["img1.png"],["img2.png"],["img3.png"]]
|
161 |
+
iface = gr.Interface(
|
162 |
+
fn=image_processing,
|
163 |
+
inputs=[gr.inputs.Image(label="Input Image"),
|
164 |
+
gr.components.Dropdown(["Tips", "Branches","Both","SIFT Transform","LBP Transform","HOG Transform","Compute ALL"], label="Choose the operation to be performed"),
|
165 |
+
gr.components.Dropdown(["Compute_Branches","Compute_Tips","Compute_Both","Compute_SIFT","Compute_LBP","Compute_HOG"],label="choose from compute all")],
|
166 |
+
outputs=gr.outputs.Image(type="pil", label="Processed Image"),
|
167 |
+
#gr.components.Button("Show Excel", type="button", onclick=show_excel)],
|
168 |
+
#title="TAMU AgriLife Plant Phenotyping Data Analysis Tool",
|
169 |
+
description= body,
|
170 |
+
layout="vertical",
|
171 |
+
allow_flagging=False,
|
172 |
+
allow_screenshot=False,
|
173 |
+
theme=theme
|
174 |
+
#examples=examples
|
175 |
+
)
|
176 |
+
|
177 |
+
#iface.launch()
|
178 |
+
|
179 |
+
iface.launch()
|
180 |
+
|