Spaces:
Runtime error
Runtime error
Commit
·
27c6e3c
1
Parent(s):
d9fc1b7
Update app.py
Browse files
app.py
CHANGED
@@ -1,180 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
import cv2
|
6 |
-
|
7 |
-
from skimage.feature import local_binary_pattern
|
8 |
-
from io import BytesIO
|
9 |
-
from skimage.feature import hog
|
10 |
-
import base64 # import the base64 module
|
11 |
-
import openpyxl
|
12 |
-
import pandas as pd
|
13 |
-
from gradio import themes
|
14 |
-
import gradio as gr
|
15 |
-
import os
|
16 |
-
from gradio import components
|
17 |
-
import webbrowser
|
18 |
-
|
19 |
-
#from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
|
20 |
-
|
21 |
-
theme = gr.themes.Base(
|
22 |
-
primary_hue="violet",
|
23 |
-
secondary_hue="green",
|
24 |
-
).set(
|
25 |
-
body_background_fill_dark='*checkbox_label_background_fill'
|
26 |
-
)
|
27 |
-
|
28 |
-
def show_excel():
|
29 |
-
os.system("start excel tip_pts_mask.xlsx")
|
30 |
-
|
31 |
-
def image_processing(image,input_type,input_choice):
|
32 |
-
array = np.array(image)
|
33 |
-
array = array.astype(np.float32)
|
34 |
-
gray_img = cv2.cvtColor(array, cv2.COLOR_RGB2GRAY)
|
35 |
-
if input_type == "Tips":
|
36 |
-
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
37 |
-
output_image = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
38 |
-
non_zero_indices = np.nonzero(output_image)
|
39 |
-
|
40 |
-
# Create a new Excel workbook and worksheet
|
41 |
-
workbook = openpyxl.Workbook()
|
42 |
-
worksheet = workbook.active
|
43 |
-
|
44 |
-
# Write the non-zero indices to the worksheet
|
45 |
-
for row, col in zip(*non_zero_indices):
|
46 |
-
worksheet.cell(row=row+1, column=1, value=row)
|
47 |
-
worksheet.cell(row=row+1, column=2, value=col)
|
48 |
-
|
49 |
-
# Save the workbook
|
50 |
-
#excel_tips = 'tip_pts_mask_indices.xlsx'
|
51 |
-
excel_tips= workbook.save('tip_pts_mask_indices.xlsx')
|
52 |
-
|
53 |
-
|
54 |
-
# Create a DataFrame from the branch points mask
|
55 |
-
df = pd.DataFrame(output_image)
|
56 |
-
# Save the DataFrame to an excel file
|
57 |
-
df.to_excel('tip_pts_mask.xlsx', index=False)
|
58 |
-
|
59 |
-
|
60 |
-
elif input_type == "Branches":
|
61 |
-
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
62 |
-
output_image = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
63 |
-
non_zero_indices = np.nonzero(output_image)
|
64 |
-
|
65 |
-
# Create a new Excel workbook and worksheet
|
66 |
-
workbook = openpyxl.Workbook()
|
67 |
-
worksheet = workbook.active
|
68 |
-
|
69 |
-
# Write the non-zero indices to the worksheet
|
70 |
-
for row, col in zip(*non_zero_indices):
|
71 |
-
worksheet.cell(row=row+1, column=1, value=row)
|
72 |
-
worksheet.cell(row=row+1, column=2, value=col)
|
73 |
-
|
74 |
-
# Save the workbook
|
75 |
-
workbook.save('branch_pts_mask_indices.xlsx')
|
76 |
-
|
77 |
-
# Create a DataFrame from the branch points mask
|
78 |
-
df = pd.DataFrame(output_image)
|
79 |
-
# Save the DataFrame to an excel file
|
80 |
-
df.to_excel('branch_pts_mask.xlsx', index=False)
|
81 |
-
|
82 |
-
elif input_type == "Both":
|
83 |
-
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
84 |
-
tips = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
85 |
-
branches = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
86 |
-
output_image = np.zeros_like(img1)
|
87 |
-
output_image[tips > 0] = 254
|
88 |
-
output_image[branches > 0] = 128
|
89 |
-
elif input_type == "sort":
|
90 |
-
image = pcv.morphology.skeletonize(mask=gray_img)
|
91 |
-
img1,edge_objects = pcv.morphology.prune(skel_img=image, size=70, mask=None)
|
92 |
-
#output_image = leaf(skel_img=img1,objects=edge_objects, mask=None)
|
93 |
-
elif input_type == "sift transform":
|
94 |
-
image = pcv.morphology.skeletonize(mask=gray_img)
|
95 |
-
sift = cv2.SIFT_create()
|
96 |
-
kp, des= sift.detectAndCompute(image, None)
|
97 |
-
output_image = cv2.drawKeypoints(image, kp, des)
|
98 |
-
np.savez('sift_descriptors.npz', descriptors=des)
|
99 |
-
|
100 |
-
elif input_type == "lbp transform":
|
101 |
-
radius = 1 # LBP feature radius
|
102 |
-
n_points = 8 * radius # number of LBP feature points
|
103 |
-
output_image = local_binary_pattern(gray_img, n_points, radius)
|
104 |
-
# Save the LBP transformed image as a NumPy array in .npz format
|
105 |
-
np.savez('lbp_transform.npz', lbp=output_image)
|
106 |
-
|
107 |
-
elif input_type == "hog transform":
|
108 |
-
image = pcv.morphology.skeletonize(mask=array)
|
109 |
-
fd,output_image = hog(gray_img, orientations=10, pixels_per_cell=(16, 16),
|
110 |
-
cells_per_block=(1, 1), visualize=True, multichannel=False, channel_axis=-1)
|
111 |
-
np.savez('hog_transform.npz', hog=output_image)
|
112 |
-
elif input_type == "compute all":
|
113 |
-
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
114 |
-
if input_choice == "compute_branches":
|
115 |
-
output_image = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
116 |
-
elif input_choice == "compute_tips":
|
117 |
-
output_image = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
118 |
-
elif input_choice == "compute_both":
|
119 |
-
img1 = pcv.morphology.skeletonize(mask=gray_img)
|
120 |
-
tips = pcv.morphology.find_tips(skel_img=img1, mask=None, label="default")
|
121 |
-
branches = pcv.morphology.find_branch_pts(skel_img=img1, mask=None, label="default")
|
122 |
-
output_image = np.zeros_like(img1)
|
123 |
-
output_image[tips > 0] = 255
|
124 |
-
output_image[branches > 0] = 128
|
125 |
-
elif input_choice == "compute_sift":
|
126 |
-
image = pcv.morphology.skeletonize(mask=gray_img)
|
127 |
-
sift = cv2.SIFT_create()
|
128 |
-
kp, des= sift.detectAndCompute(image, None)
|
129 |
-
output_image = cv2.drawKeypoints(image, kp, des)
|
130 |
-
elif input_choice == "compute_lbp":
|
131 |
-
radius = 1 # LBP feature radius
|
132 |
-
n_points = 8 * radius # number of LBP feature points
|
133 |
-
output_image = local_binary_pattern(gray_img, n_points, radius)
|
134 |
-
elif input_choice == "compute_hog":
|
135 |
-
image = pcv.morphology.skeletonize(mask=array)
|
136 |
-
fd,output_image = hog(gray_img, orientations=10, pixels_per_cell=(16, 16),
|
137 |
-
cells_per_block=(1, 1), visualize=True, multichannel=False, channel_axis=-1)
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
145 |
|
146 |
-
#
|
147 |
-
|
|
|
148 |
|
149 |
-
|
150 |
-
"
|
151 |
-
|
152 |
-
"<br>"
|
153 |
-
"This demo extracts the plant statistics and the image features and also stores them. "
|
154 |
-
"<br>"
|
155 |
-
"<a href ='https://precisiongreenhouse.tamu.edu/'>The Texas A&M Plant Growth and Phenotyping Facility Data Analysis Pipeline</a>"
|
156 |
-
"</center>"
|
157 |
-
)
|
158 |
|
|
|
159 |
|
160 |
-
|
161 |
iface = gr.Interface(
|
162 |
-
fn=
|
163 |
-
inputs=[
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
#title="TAMU AgriLife Plant Phenotyping Data Analysis Tool",
|
169 |
-
description= body,
|
170 |
-
layout="vertical",
|
171 |
-
allow_flagging=False,
|
172 |
-
allow_screenshot=False,
|
173 |
-
theme=theme
|
174 |
-
#examples=examples
|
175 |
)
|
176 |
|
177 |
-
#
|
178 |
-
|
179 |
iface.launch()
|
180 |
-
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Define a function that performs the image operation
|
6 |
+
def perform_image_operation(input_image1, input_image2):
|
7 |
+
# Load the images using OpenCV
|
8 |
+
image1 = cv2.imread(input_image1.name)
|
9 |
+
image2 = cv2.imread(input_image2.name)
|
10 |
|
11 |
+
# Perform the image operation (e.g., blending)
|
12 |
+
alpha = 0.5 # Adjust alpha for blending
|
13 |
+
blended_image = cv2.addWeighted(image1, alpha, image2, 1 - alpha, 0)
|
14 |
|
15 |
+
# Save the result to a temporary file
|
16 |
+
result_path = "result.png"
|
17 |
+
cv2.imwrite(result_path, blended_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
return result_path
|
20 |
|
21 |
+
# Define the Gradio interface
|
22 |
iface = gr.Interface(
|
23 |
+
fn=perform_image_operation,
|
24 |
+
inputs=[
|
25 |
+
gr.inputs.Image(label="Input Image 1"),
|
26 |
+
gr.inputs.Image(label="Input Image 2")
|
27 |
+
],
|
28 |
+
outputs=gr.outputs.Image(label="Blended Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
|
31 |
+
# Start the Gradio app
|
|
|
32 |
iface.launch()
|
|