yanyoyo commited on
Commit
68dd607
·
1 Parent(s): 884eb73

nice commit

Browse files
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import streamlit as st
3
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
4
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
5
+ from llama_index.llms.huggingface import HuggingFaceLLM
6
+
7
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
8
+ st.title("llama_index_demo")
9
+
10
+ # 初始化模型
11
+ @st.cache_resource
12
+ def init_models():
13
+ embed_model = HuggingFaceEmbedding(
14
+ model_name="/root/model/sentence-transformer"
15
+ )
16
+ Settings.embed_model = embed_model
17
+
18
+ llm = HuggingFaceLLM(
19
+ model_name="/root/model/internlm2-chat-1_8b",
20
+ tokenizer_name="/root/model/internlm2-chat-1_8b",
21
+ model_kwargs={"trust_remote_code": True},
22
+ tokenizer_kwargs={"trust_remote_code": True}
23
+ )
24
+ Settings.llm = llm
25
+
26
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
27
+ index = VectorStoreIndex.from_documents(documents)
28
+ query_engine = index.as_query_engine()
29
+
30
+ return query_engine
31
+
32
+ # 检查是否需要初始化模型
33
+ if 'query_engine' not in st.session_state:
34
+ st.session_state['query_engine'] = init_models()
35
+
36
+ def greet2(question):
37
+ response = st.session_state['query_engine'].query(question)
38
+ return response
39
+
40
+
41
+ # Store LLM generated responses
42
+ if "messages" not in st.session_state.keys():
43
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
44
+
45
+ # Display or clear chat messages
46
+ for message in st.session_state.messages:
47
+ with st.chat_message(message["role"]):
48
+ st.write(message["content"])
49
+
50
+ def clear_chat_history():
51
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
52
+
53
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
54
+
55
+ # Function for generating LLaMA2 response
56
+ def generate_llama_index_response(prompt_input):
57
+ return greet2(prompt_input)
58
+
59
+ # User-provided prompt
60
+ if prompt := st.chat_input():
61
+ st.session_state.messages.append({"role": "user", "content": prompt})
62
+ with st.chat_message("user"):
63
+ st.write(prompt)
64
+
65
+ # Gegenerate_llama_index_response last message is not from assistant
66
+ if st.session_state.messages[-1]["role"] != "assistant":
67
+ with st.chat_message("assistant"):
68
+ with st.spinner("Thinking..."):
69
+ response = generate_llama_index_response(prompt)
70
+ placeholder = st.empty()
71
+ placeholder.markdown(response)
72
+ message = {"role": "assistant", "content": response}
73
+ st.session_state.messages.append(message)
data/README_zh-CN.md ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
3
+ <br /><br />
4
+
5
+ [![GitHub Repo stars](https://img.shields.io/github/stars/InternLM/xtuner?style=social)](https://github.com/InternLM/xtuner/stargazers)
6
+ [![license](https://img.shields.io/github/license/InternLM/xtuner.svg)](https://github.com/InternLM/xtuner/blob/main/LICENSE)
7
+ [![PyPI](https://img.shields.io/pypi/v/xtuner)](https://pypi.org/project/xtuner/)
8
+ [![Downloads](https://static.pepy.tech/badge/xtuner)](https://pypi.org/project/xtuner/)
9
+ [![issue resolution](https://img.shields.io/github/issues-closed-raw/InternLM/xtuner)](https://github.com/InternLM/xtuner/issues)
10
+ [![open issues](https://img.shields.io/github/issues-raw/InternLM/xtuner)](https://github.com/InternLM/xtuner/issues)
11
+
12
+ 👋 加入我们:[![Static Badge](https://img.shields.io/badge/-grey?style=social&logo=wechat&label=微信)](https://cdn.vansin.top/internlm/xtuner.jpg)
13
+ [![Static Badge](https://img.shields.io/badge/-grey?style=social&logo=twitter&label=推特)](https://twitter.com/intern_lm)
14
+ [![Static Badge](https://img.shields.io/badge/-grey?style=social&logo=discord&label=Discord)](https://discord.gg/xa29JuW87d)
15
+
16
+ 🔍 探索我们的模型:
17
+ [![Static Badge](https://img.shields.io/badge/-gery?style=social&label=🤗%20Huggingface)](https://huggingface.co/xtuner)
18
+ [![Static Badge](https://img.shields.io/badge/-gery?style=social&label=🤖%20ModelScope)](https://www.modelscope.cn/organization/xtuner)
19
+ [![Static Badge](https://img.shields.io/badge/-gery?style=social&label=🧰%20OpenXLab)](https://openxlab.org.cn/usercenter/xtuner)
20
+ [![Static Badge](https://img.shields.io/badge/-gery?style=social&label=🧠%20WiseModel)](https://www.wisemodel.cn/organization/xtuner)
21
+
22
+ [English](README.md) | 简体中文
23
+
24
+ </div>
25
+
26
+ ## 🚀 Speed Benchmark
27
+
28
+ - XTuner 与 LLaMA-Factory 在 Llama2-7B 模型上的训练效率对比
29
+
30
+ <div align=center>
31
+ <img src="https://github.com/InternLM/xtuner/assets/41630003/9c9dfdf4-1efb-4daf-84bf-7c379ae40b8b" style="width:80%">
32
+ </div>
33
+
34
+ - XTuner 与 LLaMA-Factory 在 Llama2-70B 模型上的训练效率对比
35
+
36
+ <div align=center>
37
+ <img src="https://github.com/InternLM/xtuner/assets/41630003/5ba973b8-8885-4b72-b51b-c69fa1583bdd" style="width:80%">
38
+ </div>
39
+
40
+ ## 🎉 更新
41
+ - **\[2024/07\]** 支持 [MiniCPM](xtuner/configs/minicpm/) 模型!
42
+ - **\[2024/07\]** 支持训练 [DPO](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/dpo), [ORPO](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/orpo) 还有 [Reward Model](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/reward_model) ! 并且能够支持打包数据以及序列并行功能! 请参考 [文档](https://xtuner.readthedocs.io/zh-cn/latest/dpo/overview.html) 了解更多信息。
43
+ - **\[2024/07\]** 支持 [InternLM 2.5](xtuner/configs/internlm/internlm2_5_chat_7b/) 模型!
44
+ - **\[2024/06\]** 支持 [DeepSeek V2](xtuner/configs/deepseek/deepseek_v2_chat/) models! **训练速度提升一倍!**
45
+ - **\[2024/04\]** 多模态大模型 [LLaVA-Phi-3-mini](https://huggingface.co/xtuner/llava-phi-3-mini-hf) 发布!快速开始请查阅此[文档](xtuner/configs/llava/phi3_mini_4k_instruct_clip_vit_large_p14_336)!
46
+ - **\[2024/04\]** 多模态大模型 [LLaVA-Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b) 和 [LLaVA-Llama-3-8B-v1.1](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1) 发布!快速开始请查阅此[文档](xtuner/configs/llava/llama3_8b_instruct_clip_vit_large_p14_336)!
47
+ - **\[2024/04\]** 支持 [Llama 3](xtuner/configs/llama) 模型!
48
+ - **\[2024/04\]** 支持序列并行训练策略以实现语言模型超长上下文训练!\[[文档](https://github.com/InternLM/xtuner/blob/docs/docs/zh_cn/acceleration/train_extreme_long_sequence.rst)\] \[[速度基准](https://github.com/InternLM/xtuner/blob/docs/docs/zh_cn/acceleration/benchmark.rst)\]
49
+ - **\[2024/02\]** 支持 [Gemma](xtuner/configs/gemma) 模型!
50
+ - **\[2024/02\]** 支持 [Qwen1.5](xtuner/configs/qwen/qwen1_5) 模型!
51
+ - **\[2024/01\]** 支持 [InternLM2](xtuner/configs/internlm) 模型!同时,最新版的多模态大模型 [LLaVA-Internlm2-7B](https://huggingface.co/xtuner/llava-internlm2-7b) / [20B](https://huggingface.co/xtuner/llava-internlm2-20b) 发布,其表现出强大的性能!
52
+ - **\[2024/01\]** 支持 [DeepSeek-MoE](https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat) 模型!20GB 显存即可实现 QLoRA 微调,4x80GB 即可实现全参数微调。快速开始请查阅相关[配置文件](xtuner/configs/deepseek/)!
53
+ - **\[2023/12\]** 🔥 支持多模态模型 VLM([LLaVA-v1.5](https://github.com/haotian-liu/LLaVA))预训练和指令微调!快速开始请查阅此[文档](xtuner/configs/llava/README_zh-CN.md)!
54
+ - **\[2023/12\]** 🔥 支持 [Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) 模型!快速开始请查阅此[文档](xtuner/configs/mixtral/README.md)!
55
+ - **\[2023/11\]** 支持 [ChatGLM3-6B](xtuner/configs/chatglm) 模型!
56
+ - **\[2023/10\]** 支持 [MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench) 数据集,并且微调所得大语言模型可应用至 [Lagent](https://github.com/InternLM/lagent) 框架!
57
+ - **\[2023/10\]** 优化数据处理逻辑以兼容 `system` 字段,相关细节请查阅[文档](docs/zh_cn/user_guides/dataset_format.md)!
58
+ - **\[2023/09\]** 支持 [InternLM-20B](xtuner/configs/internlm) 系列模型!
59
+ - **\[2023/09\]** 支持 [Baichuan2](xtuner/configs/baichuan) 系列模型!
60
+ - **\[2023/08\]** XTuner 正式发布!众多微调模型已上传至 [HuggingFace](https://huggingface.co/xtuner)!
61
+
62
+ ## 📖 介绍
63
+
64
+ XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。
65
+
66
+ **高效**
67
+
68
+ - 支持大语言模型 LLM、多模态图文模型 VLM 的预训练及轻量级微调。XTuner 支持在 8GB 显存下微调 7B 模型,同时也支持多节点跨设备微调更大尺度模型(70B+)。
69
+ - 自动分发高性能算子(如 FlashAttention、Triton kernels 等)以加速训练吞吐。
70
+ - 兼容 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀,轻松应用各种 ZeRO 训练优化策略。
71
+
72
+ **灵活**
73
+
74
+ - 支持多种大语言模型,包括但不限于 [InternLM](https://huggingface.co/internlm)、[Mixtral-8x7B](https://huggingface.co/mistralai)、[Llama 2](https://huggingface.co/meta-llama)、[ChatGLM](https://huggingface.co/THUDM)、[Qwen](https://huggingface.co/Qwen)、[Baichuan](https://huggingface.co/baichuan-inc)。
75
+ - 支持多模态图文模型 LLaVA 的预训练与微调。利用 XTuner 训得模型 [LLaVA-InternLM2-20B](https://huggingface.co/xtuner/llava-internlm2-20b) 表现优异。
76
+ - 精心设计的数据管道,兼容任意数据格式,开源数据或自定义数据皆可快速上手。
77
+ - 支持 [QLoRA](http://arxiv.org/abs/2305.14314)、[LoRA](http://arxiv.org/abs/2106.09685)、全量参数微调等多种微调算法,支撑用户根据具体需求作出最优选择。
78
+
79
+ **全能**
80
+
81
+ - 支持增量预训练、指令微调与 Agent 微调。
82
+ - 预定义众多开源对话模版,支持与开源或训练所得模型进行对话。
83
+ - 训练所得模型可无缝接入部署工具库 [LMDeploy](https://github.com/InternLM/lmdeploy)、大规模评测工具库 [OpenCompass](https://github.com/open-compass/opencompass) 及 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)。
84
+
85
+ ## 🔥 支持列表
86
+
87
+ <table>
88
+ <tbody>
89
+ <tr align="center" valign="middle">
90
+ <td>
91
+ <b>模型</b>
92
+ </td>
93
+ <td>
94
+ <b>数据集</b>
95
+ </td>
96
+ <td>
97
+ <b>数据格式</b>
98
+ </td>
99
+ <td>
100
+ <b>微调算法</b>
101
+ </td>
102
+ </tr>
103
+ <tr valign="top">
104
+ <td align="left" valign="top">
105
+ <ul>
106
+ <li><a href="https://huggingface.co/internlm">InternLM 2 / 2.5</a></li>
107
+ <li><a href="https://huggingface.co/meta-llama">Llama 2 / 3</a></li>
108
+ <li><a href="https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3">Phi-3</a></li>
109
+ <li><a href="https://huggingface.co/THUDM/chatglm2-6b">ChatGLM2</a></li>
110
+ <li><a href="https://huggingface.co/THUDM/chatglm3-6b">ChatGLM3</a></li>
111
+ <li><a href="https://huggingface.co/Qwen/Qwen-7B">Qwen</a></li>
112
+ <li><a href="https://huggingface.co/baichuan-inc/Baichuan2-7B-Base">Baichuan2</a></li>
113
+ <li><a href="https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1">Mixtral</a></li>
114
+ <li><a href="https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat">DeepSeek V2</a></li>
115
+ <li><a href="https://huggingface.co/google">Gemma</a></li>
116
+ <li><a href="https://huggingface.co/openbmb">MiniCPM</a></li>
117
+ <li>...</li>
118
+ </ul>
119
+ </td>
120
+ <td>
121
+ <ul>
122
+ <li><a href="https://modelscope.cn/datasets/damo/MSAgent-Bench">MSAgent-Bench</a></li>
123
+ <li><a href="https://huggingface.co/datasets/fnlp/moss-003-sft-data">MOSS-003-SFT</a> 🔧</li>
124
+ <li><a href="https://huggingface.co/datasets/tatsu-lab/alpaca">Alpaca en</a> / <a href="https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese">zh</a></li>
125
+ <li><a href="https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k">WizardLM</a></li>
126
+ <li><a href="https://huggingface.co/datasets/timdettmers/openassistant-guanaco">oasst1</a></li>
127
+ <li><a href="https://huggingface.co/datasets/garage-bAInd/Open-Platypus">Open-Platypus</a></li>
128
+ <li><a href="https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K">Code Alpaca</a></li>
129
+ <li><a href="https://huggingface.co/datasets/burkelibbey/colors">Colorist</a> 🎨</li>
130
+ <li><a href="https://github.com/WangRongsheng/ChatGenTitle">Arxiv GenTitle</a></li>
131
+ <li><a href="https://github.com/LiuHC0428/LAW-GPT">Chinese Law</a></li>
132
+ <li><a href="https://huggingface.co/datasets/Open-Orca/OpenOrca">OpenOrca</a></li>
133
+ <li><a href="https://huggingface.co/datasets/shibing624/medical">Medical Dialogue</a></li>
134
+ <li>...</li>
135
+ </ul>
136
+ </td>
137
+ <td>
138
+ <ul>
139
+ <li><a href="docs/zh_cn/user_guides/incremental_pretraining.md">Incremental Pre-training</a> </li>
140
+ <li><a href="docs/zh_cn/user_guides/single_turn_conversation.md">Single-turn Conversation SFT</a> </li>
141
+ <li><a href="docs/zh_cn/user_guides/multi_turn_conversation.md">Multi-turn Conversation SFT</a> </li>
142
+ </ul>
143
+ </td>
144
+ <td>
145
+ <ul>
146
+ <li><a href="http://arxiv.org/abs/2305.14314">QLoRA</a></li>
147
+ <li><a href="http://arxiv.org/abs/2106.09685">LoRA</a></li>
148
+ <li>全量参数微调</li>
149
+ <li><a href="https://arxiv.org/abs/2305.18290">DPO</a></li>
150
+ <li><a href="https://arxiv.org/abs/2403.07691">ORPO</a></li>
151
+ <li>Reward Model</a></li>
152
+ </ul>
153
+ </td>
154
+ </tr>
155
+ </tbody>
156
+ </table>
157
+
158
+ ## 🛠️ 快速上手
159
+
160
+ ### 安装
161
+
162
+ - 推荐使用 conda 先构建一个 Python-3.10 的虚拟环境
163
+
164
+ ```bash
165
+ conda create --name xtuner-env python=3.10 -y
166
+ conda activate xtuner-env
167
+ ```
168
+
169
+ - 通过 pip 安装 XTuner:
170
+
171
+ ```shell
172
+ pip install -U xtuner
173
+ ```
174
+
175
+ 亦可集成 DeepSpeed 安装:
176
+
177
+ ```shell
178
+ pip install -U 'xtuner[deepspeed]'
179
+ ```
180
+
181
+ - 从源码安装 XTuner:
182
+
183
+ ```shell
184
+ git clone https://github.com/InternLM/xtuner.git
185
+ cd xtuner
186
+ pip install -e '.[all]'
187
+ ```
188
+
189
+ ### 微调
190
+
191
+ XTuner 支持微调大语言模型。数据集预处理指南请查阅[文档](./docs/zh_cn/user_guides/dataset_prepare.md)。
192
+
193
+ - **步骤 0**,准备配置文件。XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看:
194
+
195
+ ```shell
196
+ xtuner list-cfg
197
+ ```
198
+
199
+ 或者,如果所提供的配置文件不能满足使用需求,请导出所提供的配置文件并进行相应更改:
200
+
201
+ ```shell
202
+ xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH}
203
+ vi ${SAVE_PATH}/${CONFIG_NAME}_copy.py
204
+ ```
205
+
206
+ - **步骤 1**,开始微调。
207
+
208
+ ```shell
209
+ xtuner train ${CONFIG_NAME_OR_PATH}
210
+ ```
211
+
212
+ 例如,我们可以利用 QLoRA 算法在 oasst1 数据集上微调 InternLM2.5-Chat-7B:
213
+
214
+ ```shell
215
+ # 单卡
216
+ xtuner train internlm2_5_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
217
+ # 多卡
218
+ (DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_5_chat_7b_qlora_oasst1_e3 --deepspeed deepspeed_zero2
219
+ (SLURM) srun ${SRUN_ARGS} xtuner train internlm2_5_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2
220
+ ```
221
+
222
+ - `--deepspeed` 表示使用 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀 来优化训练过程。XTuner 内置了多种策略,包括 ZeRO-1、ZeRO-2、ZeRO-3 等。如果用户期望关闭此功能,请直接移除此参数。
223
+
224
+ - 更多示例,请查阅[文档](./docs/zh_cn/user_guides/finetune.md)。
225
+
226
+ - **步骤 2**,将保存的 PTH 模型(如果使用的DeepSpeed,则将会是一个文件夹)转换为 HuggingFace 模型:
227
+
228
+ ```shell
229
+ xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
230
+ ```
231
+
232
+ ### 对话
233
+
234
+ XTuner 提供与大语言模型对话的工具。
235
+
236
+ ```shell
237
+ xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter {NAME_OR_PATH_TO_ADAPTER} [optional arguments]
238
+ ```
239
+
240
+ 例如:
241
+
242
+ 与 InternLM2.5-Chat-7B 对话:
243
+
244
+ ```shell
245
+ xtuner chat internlm/internlm2-chat-7b --prompt-template internlm2_chat
246
+ ```
247
+
248
+ 更多示例,请查阅[文档](./docs/zh_cn/user_guides/chat.md)。
249
+
250
+ ### 部署
251
+
252
+ - **步骤 0**,将 HuggingFace adapter 合并到大语言模型:
253
+
254
+ ```shell
255
+ xtuner convert merge \
256
+ ${NAME_OR_PATH_TO_LLM} \
257
+ ${NAME_OR_PATH_TO_ADAPTER} \
258
+ ${SAVE_PATH} \
259
+ --max-shard-size 2GB
260
+ ```
261
+
262
+ - **步骤 1**,使用任意推理框架部署微调后的大语言模型,例如 [LMDeploy](https://github.com/InternLM/lmdeploy) 🚀:
263
+
264
+ ```shell
265
+ pip install lmdeploy
266
+ python -m lmdeploy.pytorch.chat ${NAME_OR_PATH_TO_LLM} \
267
+ --max_new_tokens 256 \
268
+ --temperture 0.8 \
269
+ --top_p 0.95 \
270
+ --seed 0
271
+ ```
272
+
273
+ 🔥 追求速度更快、显存占用更低的推理?欢迎体验 [LMDeploy](https://github.com/InternLM/lmdeploy) 提供的 4-bit 量化!使用指南请见[文档](https://github.com/InternLM/lmdeploy/tree/main#quantization)。
274
+
275
+ ### 评测
276
+
277
+ - 推荐使用一站式平台 [OpenCompass](https://github.com/InternLM/opencompass) 来评测大语言模型,其目前已涵盖 50+ 数据集的约 30 万条题目。
278
+
279
+ ## 🤝 贡献指南
280
+
281
+ 我们感谢所有的贡献者为改进和提升 XTuner 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
282
+
283
+ ## 🎖️ 致谢
284
+
285
+ - [Llama 2](https://github.com/facebookresearch/llama)
286
+ - [DeepSpeed](https://github.com/microsoft/DeepSpeed)
287
+ - [QLoRA](https://github.com/artidoro/qlora)
288
+ - [LMDeploy](https://github.com/InternLM/lmdeploy)
289
+ - [LLaVA](https://github.com/haotian-liu/LLaVA)
290
+
291
+ ## 🖊️ 引用
292
+
293
+ ```bibtex
294
+ @misc{2023xtuner,
295
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
296
+ author={XTuner Contributors},
297
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
298
+ year={2023}
299
+ }
300
+ ```
301
+
302
+ ## 开源许可证
303
+
304
+ 该项目采用 [Apache License 2.0 开源许可证](LICENSE)。同时,请遵守所使用的模型与数据集的许可证。
data/mydataset.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 介绍
2
+
3
+ 作家yanyoyo写了一部名为《星际织梦:银河边缘的回响》的科幻小说。
4
+
5
+ # 内容
6
+
7
+ 在浩瀚无垠的银河系边缘,有一颗名为艾泽拉的神秘星球。这颗星球上的文明高度发达,却又隐藏着不为人知的危机。它的天空总是被绚丽多彩的能量光带所笼罩,那是星球核心泄露的能量与宇宙射线交织而成的奇景,也是艾泽拉人赖以生存却又畏惧的力量源泉。
8
+
9
+ 主人公林,是一位年轻且极具天赋的科学家,就职于艾泽拉最顶尖的科研机构——星耀研究院。他一头乌黑的短发下,是一双炯炯有神、总是闪烁着探索光芒的眼睛,身形矫健,透着一股对未知不屈的冲劲。林每日沉浸在实验室中,试图破解能量光带背后隐藏的宇宙密码,期望找到稳定星球核心、拯救艾泽拉于潜在覆灭危机的方法。
10
+
11
+ 一日,林像往常一样在实验室里忙碌,无意间触发了一个古老的信号装置。瞬间,实验室被一道耀眼的蓝光笼罩,等光芒散去,林发现自己置身于一个陌生而又似曾相识的空间。周围的墙壁上闪烁着奇异的符文,这些符文像是有生命一般,不断流动、组合,向他诉说着一段被尘封的历史。
12
+
13
+ 原来,艾泽拉星球并非一直如此繁荣。数百万年前,艾泽拉人曾经历过一场灭顶之灾,战争、疾病、资源枯竭让整个星球濒临崩溃。就在此时,一群来自遥远星系的神秘访客降临,他们带来了先进的科技与知识,帮助艾泽拉人重建家园,并引导他们利用星球核心的能量,开启了新的文明篇章。然而,在这看似慷慨相助的背后,却隐藏着一个惊天阴谋。这些神秘访客其实是宇宙中的星际掠夺者,他们在艾泽拉星球的核心深处埋下了一颗“定时炸弹”——一种能够逐渐吞噬星球能量、并在关键时刻引发大爆炸的装置,一旦爆炸,不仅艾泽拉会灰飞烟灭,周边星系都会受到波及。而如今,距离引爆时间已然所剩无几。
14
+
15
+ 得知真相的林心急如焚,他决定踏上一段惊心动魄的星际之旅,寻找解除危机的方法。林带着自己最得力的助手,精通机械工程的艾丽,以及对宇宙能量有着独特感知力的灵能者凯,一同驾驶着他们改装后的星际飞船“曙光号”,向着银河系的中心进发。艾丽身形娇小,却有着一双巧手,能在错综复杂的机械部件中穿梭自如,修复飞船的任何故障;凯则一袭白色长袍,眼神深邃空灵,他能凭借灵能感知危险、探寻隐藏在宇宙迷雾中的线索。
16
+
17
+ 他们的第一站是位于银河系悬臂交界处的星尘集市,这是一个汇聚了全宇宙各类生物、科技与情报的繁华之地。在这里,鱼龙混杂,稍有不慎就可能陷入万劫不复之地。林他们小心翼翼地穿梭在拥挤的街道,与形形色色的外星商贩讨价还价,试图从他们口中获取关于那颗“定时炸弹”以及解除方法的蛛丝马迹。功夫不负有心人,在一个偏僻的角落,他们遇到了一位隐居多年的老星际探险家,老探险家听闻他们的来意后,长叹一声,拿出了一份古老的星图,指向图上一个标记为“幻光深渊”的地方,说道:“传说那里藏着宇宙初创时的原始能量,若能将其引导,或许能中和你们星球核心的隐患,但那地方危险重重,进去的人从未有活着出来的。”
18
+
19
+ 林他们没有丝毫犹豫,谢过老探险家后,便朝着“幻光深渊”全速前进。当接近“幻光深渊”时,飞船上的所有仪器都开始失灵,强大的引力拉扯着“曙光号”,仿佛要将它拽入无尽的黑暗。关键时刻,凯集中精神,用灵能包裹住飞船,勉强稳住了局势。林和艾丽则争分夺秒地抢修仪器,根据老探险家提供的线索,调整飞船的动力输出,试图以一种特殊的频率震动,与深渊中的原始能量产生共鸣,打开一条安全通道。
20
+
21
+ 经过一番惊心动魄的操作,他们终于成功进入“幻光深渊”。眼前的景象让他们目瞪口呆,五彩斑斓的能量漩涡四处飞舞,每一个漩涡都蕴含着足以毁灭星球的力量。林凭借着扎实的科学知识,计算出能量共鸣的节点,指挥艾丽操控飞船小心翼翼地靠近。就在即将接触节点的瞬间,一只巨大的宇宙巨兽从深渊深处咆哮而出,它周身环绕着黑色的闪电,张开血盆大口,向着“曙光号”扑来。凯立刻挺身而出,用灵能构建起一道防护屏障,为林和艾丽争取时间。林当机立断,启动飞船上的能量采集装置,在艾丽精准的操作下,成功采集到了足够的原始能量。随后,凯拼尽全力,将灵能屏障化作一股冲击力,击退巨兽,三人驾驶飞船夺路而逃。
22
+
23
+ 带着采集到的原始能量,他们马不停蹄地赶回艾泽拉星球。然而,归途中并不平静,���际掠夺者得知他们的行动后,派出了舰队进行拦截。一场激烈的星际大战在浩瀚星空展开,激光炮的光芒、导弹的轨迹交织成一片绚烂而致命的光网。林驾驶着“曙光号”灵活穿梭,艾丽负责操控武器系统,精准回击敌人,凯则运用灵能干扰掠夺者舰队的通讯与导航,让他们阵脚大乱。在激烈的交火中,“曙光号”多处受损,但凭借着三人的默契配合与顽强斗志,他们一次次化险为夷,突破重围,终于回到了艾泽拉星球。
24
+
25
+ 回到家乡后,林迅速将原始能量引入星球核心,与那股危险的能量展开了一场惊心动魄的拔河比赛。在艾丽和凯的协助下,林不眠不休地调整能量参数,引导能量流向。整个星球都在颤抖,天空中的能量光带变得更加狂暴,仿佛在预示着这场生死较量的胜负未卜。关键时刻,林凭借着对科学的执着与对家乡的热爱,找到了能量平衡的关键点,成功解除了危机,让艾泽拉星球重归平静。
26
+
27
+ 当一切尘埃落定,林成为了艾泽拉星球的英雄,他的故事被人们世代传颂。而这一段惊心动魄的星际冒险,也成为了艾泽拉人心中永远的传奇,激励着后来者不断探索宇宙的奥秘,守护家园的安宁。
28
+
29
+ 这部小说的作者 yanyoyo,希望通过这个故事,带领读者畅游浩瀚宇宙,感受科幻世界中勇气、智慧与团结的力量,在未知的星际中寻找希望的曙光。
download_hf.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ # 设置环境变量
4
+ os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
5
+
6
+ # 下载模型
7
+ os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
llamaindex_RAG.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+
4
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
5
+ from llama_index.llms.huggingface import HuggingFaceLLM
6
+
7
+ #初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
8
+ embed_model = HuggingFaceEmbedding(
9
+ #指定了一个预训练的sentence-transformer模型的路径
10
+ model_name="/root/model/sentence-transformer"
11
+ )
12
+ #将创建的嵌入模型赋值给全局设置的embed_model属性,
13
+ #这样在后续的索引构建过程中就会使用这个模型。
14
+ Settings.embed_model = embed_model
15
+
16
+ llm = HuggingFaceLLM(
17
+ model_name="/root/model/internlm2-chat-1_8b",
18
+ tokenizer_name="/root/model/internlm2-chat-1_8b",
19
+ model_kwargs={"trust_remote_code":True},
20
+ tokenizer_kwargs={"trust_remote_code":True}
21
+ )
22
+ #设置全局的llm属性,这样在索引查询时会使用这个模型。
23
+ Settings.llm = llm
24
+
25
+ #从指定目录读取所有文档,并加载数据到内存中
26
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
27
+ #创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
28
+ # 此索引将文档转换为向量,并存储这些向量以便于快速检索。
29
+ index = VectorStoreIndex.from_documents(documents)
30
+ # 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
31
+ query_engine = index.as_query_engine()
32
+ response = query_engine.query("xtuner是什么?")
33
+
34
+ print(response)
llamaindex_internlm.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index.llms.huggingface import HuggingFaceLLM
2
+ from llama_index.core.llms import ChatMessage
3
+ llm = HuggingFaceLLM(
4
+ model_name="/root/model/internlm2-chat-1_8b",
5
+ tokenizer_name="/root/model/internlm2-chat-1_8b",
6
+ model_kwargs={"trust_remote_code":True},
7
+ tokenizer_kwargs={"trust_remote_code":True}
8
+ )
9
+
10
+ rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
11
+ print(rsp)